Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Shobukhov, Andrey"'
Publikováno v:
J. Math. Chem. Vol.54, pp.358-374 (2016)
A Monte Carlo (MC) study is performed to evaluate the surface tension $\gamma $ of spherical membranes that may be regarded as the models of the lipid layers. We use the canonical surface model defined on the self-avoiding triangulated lattices. The
Externí odkaz:
http://arxiv.org/abs/1509.07580
Autor:
Koibuchi, Hiroshi, Shobukhov, Andrey
Publikováno v:
International Journal of Modern Physics C, Vol.27 No.4 (2016) 1650042(1-15)
We numerically study an anisotropic shape transformation of membranes under external forces for two-dimensional triangulated surfaces on the basis of Finsler geometry. The Finsler metric is defined by using a vector field, which is the tangential com
Externí odkaz:
http://arxiv.org/abs/1508.07395
Autor:
Koibuchi, Hiroshi, Shobukhov, Andrey
Publikováno v:
Physica A, Vol. 410, (2014), Pages 54-65
We study phase transition of self-avoiding fluid surface model on dynamically triangulated lattices using the Monte Carlo simulation technique. We report the continuous transition between the branched polymer and inflated phases at ${\it \Delta}p \!=
Externí odkaz:
http://arxiv.org/abs/1405.1496
Autor:
Koibuchi, Hiroshi, Shobukhov, Andrey
Publikováno v:
International Journal of Modern Physics C, Vol.25 No.8 (2014) 1450033(1-18)
The Landau-Ginzburg (LG) model for membranes is numerically studied on triangulated spheres in ${\bf R}^3$. The LG model is in sharp contrast to the model of Helfrich-Polyakov (HP). The reason for this difference is that the curvature energy of the L
Externí odkaz:
http://arxiv.org/abs/1401.7106
Autor:
Koibuchi, Hiroshi, Shobukhov, Andrey
Publikováno v:
International Journal of Modern Physics C, Vol 24, No.9 (2013) 1350075(1-14)
This paper analyzes a new self-avoiding (SA) meshwork model using the canonical Monte Carlo simulation technique on lattices that consist of connection-fixed triangles. The Hamiltonian of this model includes a self-avoiding potential and a pressure t
Externí odkaz:
http://arxiv.org/abs/1312.1408
Autor:
Shobukhov Andrey
Publikováno v:
EPJ Web of Conferences, Vol 224, p 02003 (2019)
We study a one-dimensional model of the dilute aqueous solution of KCl in the electric field. Our model is based on a set of Nernst-Planck-Poisson equations and includes the incompressible fluid velocity as a parameter. We demonstrate instability of
Externí odkaz:
https://doaj.org/article/d06dfaa264b34c8d909ba8665bc13cd0
Publikováno v:
Journal of Mathematical Chemistry. Feb2016, Vol. 54 Issue 2, p358-374. 17p.
Autor:
Shobukhov, Andrey V.1, Savenkova, Nadejda P.1, Kuzmin, Runar N.2, Maximov, Dmitry S.3 shobukhov@cs.msu.su
Publikováno v:
Mathematical Modelling & Analysis. Sep2014, Vol. 19 Issue 4, p443-449. 7p.
Autor:
Shobukhov, Andrey1 shobukhov@cs.msu.su, Maximov, Dmitry2
Publikováno v:
Journal of Mathematical Chemistry. May2014, Vol. 52 Issue 5, p1338-1349. 12p.
Autor:
Nadykto, A., Uvarova, L., Zelensky, A., Pivkin, P., Lima, P., Aleksic, N., Egiazarian, K., Jiang, X., Shobukhov, Andrey
Publikováno v:
EPJ Web of Conferences; 12/9/2019, Vol. 224, p1-5, 5p