Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Shlomo Gelaki"'
Autor:
Tathagata Basak, Shlomo Gelaki
We extend \cite{G} to the nonsemisimple case. We define and study exact factorizations $\B=\A\bullet \C$ of a finite tensor category $\B$ into a product of two tensor subcategories $\A,\C\subset \B$, and relate exact factorizations of finite tensor c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4cd6721ab98fdb10f7fe03018e348957
http://arxiv.org/abs/2202.07701
http://arxiv.org/abs/2202.07701
Autor:
Pavel Etingof, Shlomo Gelaki
Publikováno v:
arXiv
We prove an analog of Deligne’s theorem for finite symmetric tensor categories [Formula: see text] with the Chevalley property over an algebraically closed field [Formula: see text] of characteristic [Formula: see text]. Namely, we prove that every
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5976de4526f435cd951273a2cbc98809
https://hdl.handle.net/1721.1/133408
https://hdl.handle.net/1721.1/133408
Autor:
Shlomo Gelaki
We use \cite{G} to study the algebra structure of twisted cotriangular Hopf algebras ${}_J\mathcal{O}(G)_{J}$, where $J$ is a Hopf $2$-cocycle for a connected nilpotent algebraic group $G$ over $\mathbb{C}$. In particular, we show that ${}_J\mathcal{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::624c81771661b6a3101ef8918dee41f0
http://arxiv.org/abs/2009.07760
http://arxiv.org/abs/2009.07760
Autor:
Pavel Etingof, Shlomo Gelaki
Publikováno v:
arXiv
We generalize the definition of an exact sequence of tensor categories due to Brugui\`eres and Natale, and introduce a new notion of an exact sequence of (finite) tensor categories with respect to a module category. We give three definitions of this
Autor:
Shlomo Gelaki
Let $k$ be an algebraically closed field of characteristic $0$ or $p>2$. Let $\mathcal{G}$ be an affine supergroup scheme over $k$. We classify the indecomposable exact module categories over the tensor category ${\rm sCoh}_{\rm f}(\mathcal{G})$ of (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7fe4a58e989135b95a86bc2e8a3f7c1a
http://arxiv.org/abs/1909.10908
http://arxiv.org/abs/1909.10908
Autor:
Pavel Etingof, Shlomo Gelaki
Publikováno v:
arXiv
We prove that every finite symmetric integral tensor category $\mathcal{C}$ with the Chevalley property over an algebraically closed field $k$ of characteristic $p>2$ admits a symmetric fiber functor to the category of supervector spaces. This proves
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c1c02ba0981381446b98c7c125a684e9
https://hdl.handle.net/1721.1/134023
https://hdl.handle.net/1721.1/134023
Autor:
Shlomo Gelaki, Pavel Etingof
Publikováno v:
arXiv
We generalize the theory of the second invariant cohomology group $H^2_{\rm inv}(G)$ for finite groups $G$, developed in [Da2,Da3,GK], to the case of affine algebraic groups $G$, using the methods of [EG1,EG2,G]. In particular, we show that for conne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::649c862396bb8842b052936df0eb179b
Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively
Autor:
Shlomo Gelaki
We introduce and study the new notion of an {\em exact factorization} $\mathcal{B}=\mathcal{A}\bullet \mathcal{C}$ of a fusion category $\mathcal{B}$ into a product of two fusion subcategories $\mathcal{A},\mathcal{C}\subseteq \mathcal{B}$ of $\mathc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6046b1ef3e1d01e22200e804f849b381
http://arxiv.org/abs/1603.01568
http://arxiv.org/abs/1603.01568
Autor:
Pavel Etingof, Shlomo Gelaki
Publikováno v:
arXiv
Original manuscript February 12, 2011
We study good (i.e., semisimple) reductions of semisimple rigid tensor categories modulo primes. A prime p is called good for a semisimple rigid tensor category C if such a reduction exists (otherwise, it is
We study good (i.e., semisimple) reductions of semisimple rigid tensor categories modulo primes. A prime p is called good for a semisimple rigid tensor category C if such a reduction exists (otherwise, it is