Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Shiyou SUI"'
Autor:
Chengcheng ZHU, Shiyou SUI, Wenyi WEI, Jian JIA, Wei LIU, Wei TIAN, Lingwei MENG, Limei JIN, Zhijiang LI
Publikováno v:
Shipin gongye ke-ji, Vol 45, Iss 9, Pp 177-185 (2024)
In this work, the blueberry candied syrup was separated and purified by microfiltration combined with macroporous resin technology to recover anthocyanins. Firstly, the macroporous resin was screened through static test. On the basis of single factor
Externí odkaz:
https://doaj.org/article/174deb5f937b4a718a1875309d4f1ab6
Publikováno v:
Shipin gongye ke-ji, Vol 43, Iss 10, Pp 64-72 (2022)
In order to study the attenuation regularity of membrane flux in the process of forward osmosis (FO) concentration, the fouling rule of FO membrane affected by different parameters including ionic strength, BSA concentration in the feed and membrane
Externí odkaz:
https://doaj.org/article/b5308e2aa8b14302b5af390d45ed5383
Publikováno v:
Journal of Food Engineering. 335:111158
Publikováno v:
Nonlinear Analysis: Real World Applications. 49:137-158
In this paper, we consider the bifurcation of limit cycles for generic L–V system ( x = y + x 2 − y 2 ± 4 3 x y , y = − x + 2 x y ) and B–T system ( x = y , y = − x + x 2 ) under perturbations of piecewise smooth polynomials with degree n
Publikováno v:
Qualitative Theory of Dynamical Systems. 18:947-967
The present paper is devoted to study the number of zeros of Abelian integral for the near-Hamilton system $$\begin{aligned} {\left\{ \begin{array}{ll} \dot{x} = 2y(bx^2+2cy^2)+\varepsilon f(x,y),\\ \dot{y} = 2x(1-2ax^2-by^2)+\varepsilon g(x,y), \end
Autor:
Liqin Zhao, Shiyou Sui
Publikováno v:
International Journal of Bifurcation and Chaos. 28:1850063
In this paper, we consider the number of zeros of Abelian integral for the system [Formula: see text], [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are arbitrary polynomials of degree [Formula: see text
Autor:
Shiyou Sui, Baoyi Li
Publikováno v:
International Journal of Bifurcation and Chaos. 27:1750196
This paper investigates the planar differential systems [Formula: see text], [Formula: see text] under the perturbations of polynomials of [Formula: see text] with degree [Formula: see text], where [Formula: see text] with [Formula: see text] and [Fo