Zobrazeno 1 - 10
of 1 101
pro vyhledávání: '"Shishkin mesh"'
Autor:
Sharma, Amit, Rai, Pratima
Publikováno v:
Engineering Computations, 2024, Vol. 41, Issue 5, pp. 1141-1170.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/EC-09-2023-0534
Autor:
K. R. Ranjan, S. Gowrisankar
Publikováno v:
Iranian Journal of Numerical Analysis and Optimization, Vol 14, Iss Issue 2, Pp 347-366 (2024)
In this article, we explore the discontinuous Galerkin finite element method for two-parametric singularly perturbed convection-diffusion problems with a discontinuous source term. Due to the discontinuity in the source term, the problem typically sh
Externí odkaz:
https://doaj.org/article/fedd7b3bd59a4ee48446f945874cd699
Publikováno v:
Applied Mathematics in Science and Engineering, Vol 32, Iss 1 (2024)
ABSTRACTIn this study, to solve the singularly perturbed delay convection–diffusion–reaction problem, we proposed a hybrid numerical scheme that converges uniformly. Parabolic right boundary layer outcomes from the presence of the small perturbat
Externí odkaz:
https://doaj.org/article/83763f97bea245e19d0fca2fa72ffab7
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 10, Iss , Pp 100722- (2024)
In this paper, a numerical scheme for a class of singularly perturbed delay parabolic convection–diffusion problems having Dirichlet boundary conditions is proposed. When the perturbation parameter tends to zero, the solution to these problems exhi
Externí odkaz:
https://doaj.org/article/969c9c69649040f287a97ecd905609c3
Publikováno v:
Ratio Mathematica, Vol 50, Iss 0 (2023)
A linear system of ’n’ second order ordinary differential equations of reaction-diffusion type with discontinuous source terms is considered. On a piecewise uniform Shishkin mesh, a numerical system is built that employs the finite element method
Externí odkaz:
https://doaj.org/article/a31bb4ad77e64a279c31e6ee5b5478d4
Publikováno v:
Partial Differential Equations in Applied Mathematics, Vol 8, Iss , Pp 100586- (2023)
This work presents a numerical solution to singularly perturbed Robin-type parabolic convection–diffusion problems. A hybrid method that combines the central difference scheme in the inner region and the midpoint of the upwind scheme in the outer r
Externí odkaz:
https://doaj.org/article/a9abc7a9fd9b4fcb8f244b79e20edd78
Publikováno v:
Applied Mathematics in Science and Engineering, Vol 31, Iss 1 (2023)
In this study, we consider singularly perturbed large negative shift parabolic reaction–diffusion with integral boundary condition. The continuous solution's properties are discussed. On a non-uniform Shishkin mesh, the spatial derivative is discre
Externí odkaz:
https://doaj.org/article/cae57468ebe34d7fb9c551fc8ca55155
Publikováno v:
AIMS Mathematics, Vol 8, Iss 7, Pp 16691-16707 (2023)
This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed
Externí odkaz:
https://doaj.org/article/a0bbb11831464158bfcdb826ecf9ef97
Publikováno v:
Results in Applied Mathematics, Vol 20, Iss , Pp 100405- (2023)
In this study, a robust higher-order numerical method for solving singularly perturbed parabolic reaction-diffusion problems is presented. The Crank-Nicolson method is applied to discretize the time derivative on a uniform mesh. On a Shishkin mesh, t
Externí odkaz:
https://doaj.org/article/2cb3bd34fe8b4e2ba871bc4629ec9973
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.