Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Shiry Ginosar"'
Autor:
Xi Shen, Robin Champenois, Shiry Ginosar, Ilaria Pastrolin, Morgane Rousselot, Oumayma Bounou, Tom Monnier, Spyros Gidaris, François Bougard, Pierre-Guillaume Raverdy, Marie-Françoise Limon, Christine Bénévent, Marc Smith, Olivier Poncet, K. Bender, Béatrice Joyeux-Prunel, Elizabeth Honig, Alexei A. Efros, Mathieu Aubry
Publikováno v:
International Journal of Computer Vision
International Journal of Computer Vision, Springer Verlag, 2022, ⟨10.1007/s11263-022-01576-x⟩
International Journal of Computer Vision, 2022, ⟨10.1007/s11263-022-01576-x⟩
International Journal of Computer Vision, Springer Verlag, 2022, ⟨10.1007/s11263-022-01576-x⟩
International Journal of Computer Vision, 2022, ⟨10.1007/s11263-022-01576-x⟩
International audience; Progress in the digitization of cultural assets leads to online databases that become too large for a human to analyze. Moreover, some analyses might be challenging, even for experts. In this paper, we explore two applications
We present a framework for modeling interactional communication in dyadic conversations: given multimodal inputs of a speaker, we autoregressively output multiple possibilities of corresponding listener motion. We combine the motion and speech audio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bdcadbd6efb5f3f36f790af2245023e1
http://arxiv.org/abs/2204.08451
http://arxiv.org/abs/2204.08451
Publikováno v:
CVPR
We propose a novel learned deep prior of body motion for 3D hand shape synthesis and estimation in the domain of conversational gestures. Our model builds upon the insight that body motion and hand gestures are strongly correlated in non-verbal commu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45326524ffcaf91bff2a96f5d7fade93
http://arxiv.org/abs/2007.12287
http://arxiv.org/abs/2007.12287
Publikováno v:
XRDS: Crossroads, The ACM Magazine for Students. 24:30-33
Computers help us understand art. Art helps us teach computers.
Autor:
Alexei A. Efros, Kate Rakelly, Crystal Lee, Shiry Ginosar, Sarah Sachs, Brian Yin, Philipp Krähenbühl
Publikováno v:
IEEE Transactions on Computational Imaging. 3:421-431
Imagery offers a rich description of our world and communicates a volume and type of information that cannot be captured by text alone. Since the invention of the camera, an ever-increasing number of photographs document our "visual culture" compleme
Publikováno v:
Computer Vision – ECCV 2020 ISBN: 9783030585471
ECCV (4)
ECCV (4)
We propose a learning-based framework for disentangling outdoor scenes into temporally-varying illumination and permanent scene factors. Inspired by the classic intrinsic image decomposition, our learning signal builds upon two insights: 1) combining
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c71eb08045605de7cf6abd51d5b335b5
https://doi.org/10.1007/978-3-030-58548-8_32
https://doi.org/10.1007/978-3-030-58548-8_32
Publikováno v:
ICCV
This paper presents a simple method for "do as I do" motion transfer: given a source video of a person dancing, we can transfer that performance to a novel (amateur) target after only a few minutes of the target subject performing standard moves. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e4224207f2c5ee197bb9cef2d8a4514
Publikováno v:
ICCV Workshops
Many details about our world are not captured in written records because they are too mundane or too abstract to describe in words. Fortunately, since the invention of the camera, an ever-increasing number of photographs capture much of this otherwis
Publikováno v:
Computer Vision-ECCV 2014 Workshops ISBN: 9783319161778
ECCV Workshops (1)
ECCV Workshops (1)
Although the human visual system is surprisingly robust to extreme distortion when recognizing objects, most evaluations of computer object detection methods focus only on robustness to natural form deformations such as people’s pose changes. To de
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8e8cbfc75395bcb384e067ab6365e43b
https://doi.org/10.1007/978-3-319-16178-5_7
https://doi.org/10.1007/978-3-319-16178-5_7
Although the human visual system is surprisingly robust to extreme distortion when recognizing objects, most evaluations of computer object detection methods focus only on robustness to natural form deformations such as people's pose changes. To dete
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a804dd0cba8003515bc4e3cd64195b6f