Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Shiraishi, Densuke"'
Autor:
Shiraishi, Densuke
In the present paper, we investigate the underlying geometry of Spence-Kummer's trilogarithm functional equation. Our geometry determines a certain path system on the projective line minus three points connecting the standard tangential base point to
Externí odkaz:
http://arxiv.org/abs/2307.09414
Autor:
Shiraishi, Densuke
Publikováno v:
Math. J. Okayama Univ. 66, 159-169 (2024)
In the present paper, we derive formulas of complex and $\ell$-adic multiple polylogarithms, which have two aspects: a duality in terms of indexes and a reflection in terms of variables. We provide an algebraic proof of these formulas by using algebr
Externí odkaz:
http://arxiv.org/abs/2307.09403
Autor:
Nakamura, Hiroaki, Shiraishi, Densuke
The Galois action on the pro-$\ell$ \'etale fundamental groupoid of the projective line minus three points with rational base points gives rise to a non-commutative formal power series in two variables with $\ell$-adic coefficients, called the $\ell$
Externí odkaz:
http://arxiv.org/abs/2210.17182
Autor:
Shiraishi, Densuke
Publikováno v:
Kyushu J. Math. 75 (2021), 95-113
The $\ell$-adic Galois polylogarithm is an arithmetic function on an absolute Galois group with values in $\ell$-adic numbers, which arises from Galois actions on $\ell$-adic \'etale paths on ${\mathbb P}^1 \backslash \{0,1,\infty\}$. In the present
Externí odkaz:
http://arxiv.org/abs/1909.06705
Autor:
SHIRAISHI, Densuke
Publikováno v:
Kyushu Journal of Mathematics. 75(1):95-113
The ℓ-adic Galois polylogarithm is an arithmetic function on an absolute Galois group with values in ℓ-adic numbers, which arises from Galois actions on ℓ-adic étale paths on ℙ1\{0, 1, ∞}. In the present paper, we discuss a relationship be
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.