Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Shiping Zhong"'
Autor:
Shiping Zhong
Publikováno v:
Advances in Difference Equations, Vol 2018, Iss 1, Pp 1-13 (2018)
Abstract The mapping between Belavin–Polyakov (BP) equation for the evolution of a unit tangent vector T∈S2 $T\in \mathbb{S}^{2}$ of a space curve in R3 $\mathbb{R}^{3}$ and the elliptic Liouville equation has been shown by Balakrishnan (see Phys
Externí odkaz:
https://doaj.org/article/bba4a062fc28478cb669a07a0942aab6
Publikováno v:
Organic Letters. 24:2842-2846
In this study, we aim at investigating the geometry of surfaces corresponding to the geometry of solutions of the geometric curve flows in Euclidean 3-space R 3 considering the Frenet frame. In particular, we express some geometric properties and som
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::232aa6bd647a9eb7d00022aba95d14ed
https://doi.org/10.22541/au.166756688.88270742/v1
https://doi.org/10.22541/au.166756688.88270742/v1
Autor:
Qing Ding, Shiping Zhong
Publikováno v:
Science China Mathematics. 64:1331-1348
In this article, we devote to a mathematical survey on the theory of the vortex filament in 3-dimensional spaces and its generalizations. We shall present some effective geometric tools applied in the study, such as the Schrodinger flow, the geometri
In this paper, we obtain the local-in-time existence and uniqueness of solution to the generalized Degasperis-Procesi equation in $B^1_{\infty,1}(\mathbb{R})$. Moreover, we prove that the data-to-solution of this equation is continuous but not unifor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a47cbd3341b59d36155f325adf6b64e0
https://doi.org/10.22541/au.165388861.14298485/v1
https://doi.org/10.22541/au.165388861.14298485/v1
Autor:
Shiping Zhong
Publikováno v:
Complex Analysis and its Synergies. 6
In this paper, by using the $$G_{2(2)}$$ -structure on $$\hbox {Im}(\mathbf{Ca'})\cong {\mathbb {R}}^{3,4}$$ of the purely imaginary Cayley’s split-octaves $$\mathbf{Ca'}$$ , the $$G_{2(2)}$$ -bi-normal motion of curves $$\gamma _t(s)$$ in the pseu
Autor:
Shiping Zhong
Publikováno v:
Journal of Nonlinear Sciences and Applications. 12:75-85
Publikováno v:
Journal of Geometry. 110
An almost complex Norden golden structure $$(G_c,g)$$ on a manifold is given by a tensor field $$G_c$$ of type (1, 1) satisfying the complex golden section relation $$G_c^{2}=G_c-\frac{3}{2}\hbox {Id}$$, and a pure pseudo-Riemannian metric g, i.e., a
Autor:
Shiping Zhong
Publikováno v:
Journal of Nonlinear Sciences & Applications (JNSA); 2019, Vol. 12 Issue 2, p75-85, 11p
Autor:
Qing Ding, Shiping Zhong
Publikováno v:
International Journal of Mathematics. 29:1850099
In this paper, by using the [Formula: see text]-structure on Im[Formula: see text] from the octonions [Formula: see text], the [Formula: see text]-binormal motion of curves [Formula: see text] in [Formula: see text] associated to the almost complex s