Zobrazeno 1 - 10
of 548
pro vyhledávání: '"Shiguang Shan"'
Autor:
Xin Fan, Lei Chen, Min Chen, Na Zhang, Hong Chang, Mingjie He, Zhenghao Shen, Lanyue Zhang, Hao Ding, Yuyan Xie, Yemei Huang, Weixin Ke, Meng Xiao, Xuelei Zang, Heping Xu, Wenxia Fang, Shaojie Li, Cunwei Cao, Yingchun Xu, Shiguang Shan, Wenjuan Wu, Changbin Chen, Xinying Xue, Linqi Wang
Publikováno v:
The Innovation, Vol 5, Iss 5, Pp 100681- (2024)
Summary: Strains from the Cryptococcus gattii species complex (CGSC) have caused the Pacific Northwest cryptococcosis outbreak, the largest cluster of life-threatening fungal infections in otherwise healthy human hosts known to date. In this study, w
Externí odkaz:
https://doaj.org/article/3b1c5d4bc7c6419992bd1c21579cb143
Publikováno v:
BMC Pediatrics, Vol 24, Iss 1, Pp 1-9 (2024)
Abstract Background Noonan syndrome (NS) is a rare genetic disease, and patients who suffer from it exhibit a facial morphology that is characterized by a high forehead, hypertelorism, ptosis, inner epicanthal folds, down-slanting palpebral fissures,
Externí odkaz:
https://doaj.org/article/b1d867d19fd8408b8913593d2bfb2ed7
Publikováno v:
Frontiers in Neuroscience, Vol 15 (2021)
Externí odkaz:
https://doaj.org/article/56b3816ec7844e099ee38152d7164750
Publikováno v:
Dianxin kexue, Vol 35, Pp 43-50 (2019)
Recently,deep learning has achieved impressive success on various computer vision tasks.The neural architecture is usually a key factor which directly determines the performance of the deep learning algorithm.The automated neural architecture search
Externí odkaz:
https://doaj.org/article/5214fc8f52ff47d290c94db9c907966f
Publikováno v:
IEEE Transactions on Image Processing. 32:144-158
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence. :1-21
Publikováno v:
IEEE Transactions on Multimedia. 25:1190-1203
Publikováno v:
IEEE Transactions on Multimedia. :1-15
Publikováno v:
IEEE Transactions on Cybernetics. 52:11014-11026
In this article, we propose a novel method to simultaneously solve the data problem of dirty quality and poor quantity for person reidentification (ReID). Dirty quality refers to the wrong labels in image annotations. Poor quantity means that some id
Publikováno v:
Proceedings of the AAAI Conference on Artificial Intelligence. 36:294-302
Face self-occlusions are inevitable due to the 3D nature of the human face and the loss of information in the projection process from 3D to 2D images. While recovering face self-occlusions based on 3D face reconstruction, e.g., 3D Morphable Model (3D