Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Shigeyasu Kamiya"'
Autor:
Shigeyasu KAMIYA1
Publikováno v:
Proceedings of the Japan Academy, Series A: Mathematical Sciences. Jul2017, Vol. 93 Issue 7, p67-71. 5p.
Publikováno v:
Canadian Mathematical Bulletin. 55:329-338
A complex hyperbolic triangle group is a group generated by three involutions fixing complex lines in complex hyperbolic space. Our purpose in this paper is to improve a previous result and to discuss discreteness of complex hyperbolic triangle group
Publikováno v:
Geometriae Dedicata. 97:55-80
Jorgensen's inequality gives a necessary condition for a nonelementary two generator group of isometries of hyperbolic space to be discrete. We give analogues of Jorgensen's inequality for nonelementary groups of isometries of complex hyperbolic 2-sp
Autor:
Shigeyasu Kamiya
Publikováno v:
Journal of the London Mathematical Society. 62:827-842
Autor:
Shigeyasu KAMIYA1
Publikováno v:
Proceedings of the Japan Academy, Series A: Mathematical Sciences. Oct2013, Vol. 89 Issue 8, p100-102. 3p.
Autor:
Shigeyasu Kamiya
Publikováno v:
Manuscripta Mathematica. 85:299-306
In the study of a geometrically finite kleinian group, the properties of points of approximation are discussed (see [2]). We show that ifG is a discrete subgroup ofU(1, n; C) acting on the complex unit ballBn, then a point of approximation ofG has si
Autor:
Shigeyasu Kamiya
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. 113:573-582
Let U(1, n; ℂ) be the automorphism group of the Hermitian formfor . We can regard an element of U(1, n; ℂ) as a transformation acting on , where is the closure of the complex unit ballThe non-trivial elements of U(1, n; ℂ) fall into three conju
Autor:
Shigeyasu Kamiya, John R. Parker
Publikováno v:
Mathematical proceedings of the Cambridge Philosophical Society, 2008, Vol.144(2), pp.443-455 [Peer Reviewed Journal]
We give a version of Shimizu's lemma for groups of complex hyperbolic isometries one of whose generators is a parabolic screw motion. Suppose that G is a discrete group containing a parabolic screw motion A and let B be any element of G not fixing th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::64043457cf648992b28916ae769192cc
http://dro.dur.ac.uk/6195/1/6195.pdf
http://dro.dur.ac.uk/6195/1/6195.pdf
Autor:
Shigeyasu Kamiya
Publikováno v:
The Quarterly Journal of Mathematics. 41:287-294
Autor:
Shigeyasu Kamiya
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 79, no. 5 (2003), 105-109
Let $G$ be a discrete subgroup of $PU(1,n; \mathbf{C})$. For a boundary point $y$ of the Siegel domain, we define the generalized isometric sphere $I_y(f)$ of an element $f$ of $PU(1,n; \mathbf{C})$. By using the generalized isometric spheres of elem