Zobrazeno 1 - 10
of 215
pro vyhledávání: '"Shestakov, Ivan"'
Autor:
Shestakov, Ivan, Zhang, Zerui
We construct an Anick type wild automorphism $\delta$ in a 3-generated free Poisson algebra which induces a tame automorphism in a 3-generated polynomial algebra. We also show that $\delta$ is stably tame. Dedicated to the memory of professor V.A.Rom
Externí odkaz:
http://arxiv.org/abs/2407.04919
The Jacobson Coordinatization Theorem describes the structure of unitary Jordan algebras containing the algebra $H_n(F)$ of symmetric nxn matrices over a field F with the same identity element, for $n\geq 3$. In this paper we extend the Jacobson Coor
Externí odkaz:
http://arxiv.org/abs/2402.10556
Autor:
Grishkov, Alexandre, Shestakov, Ivan
Recently V.H.L\'opez Sol\'is and I.Shestakov solved an old problem by N.Jacobson on describing of unital alternative algebras containing the $2\times 2$ matrix algebra $M_2$ as a unital subalgebra. Here we give another description of $M_2$-algebras v
Externí odkaz:
http://arxiv.org/abs/2212.01008
Autor:
Shestakov, Ivan P.
We prove that for every natural number n there exists a natural number N(n) such that every multilinear skew-symmetric polynomial on N(n) or more variables which vanishes in the free associative algebra vanishes as well in any n-generated alternative
Externí odkaz:
http://arxiv.org/abs/2207.01195
Autor:
Shestakov, Ivan, Sverchkov, Sergey
A new series of central elements is found in the free alternative algebra. More exactly, let $Alt[X]$ and $SMalc[X]\subset Alt[X]$ be the free alternative algebra and the free special Malcev algebra over a field of characteristic 0 on a set of free g
Externí odkaz:
http://arxiv.org/abs/2201.08915
Publikováno v:
In Journal of Algebra 15 April 2024 644:411-427
We prove a coordinatization theorem for unital alternative algebras containing 2 x 2 matrix algebra with the same identity element 1. This solves an old problem announced by Nathan Jacobson on the description of alternative algebras containing a gene
Externí odkaz:
http://arxiv.org/abs/2007.09313
The lower transcendence degree, introduced by J. J Zhang, is an important non-commutative invariant in ring theory and non-commutative geometry strongly connected to the classical Gelfand-Kirillov transcendence degree. For LD-stable algebras, the low
Externí odkaz:
http://arxiv.org/abs/2004.06197
Relations between triple Jordan systems and integrable multi-component models of the modified Korteveg--de Vries type are established. The most general model is related to a pair consisting of a triple Jordan system and a skew-symmetric bilinear oper
Externí odkaz:
http://arxiv.org/abs/1905.01016
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.