Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Sherman, Morgan"'
Autor:
Sherman, Morgan, Weinkove, Ben
Publikováno v:
J. Math. Anal. Appl. 527 (2023), no. 2, Paper No. 127469, 18 pp
The perfect conductivity problem concerns optimal bounds for the magnitude of an electric field in the presence of almost touching perfect conductors. This reduces to obtaining gradient estimates for harmonic functions with Dirichlet boundary conditi
Externí odkaz:
http://arxiv.org/abs/2301.03682
Autor:
Sherman, Morgan, Weinkove, Ben
Publikováno v:
J. Geom. Anal. 30 (2020), no. 1, 762--776
We extend the continuity equation of La Nave-Tian to Hermitian metrics and establish its interval of maximal existence. The equation is closely related to the Chern-Ricci flow, and we illustrate this in the case of elliptic bundles over a curve of ge
Externí odkaz:
http://arxiv.org/abs/1809.08710
Autor:
Sherman, Morgan, Weinkove, Ben
Publikováno v:
New York J. Math. 19 (2013), 565-582
Assuming local uniform bounds on the metric for a solution of the Chern-Ricci flow, we establish local Calabi and curvature estimates using the maximum principle.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/1301.1622
Autor:
Sherman, Morgan, Weinkove, Ben
Publikováno v:
Pacific J. Math. 257 (2012), no. 2, 491-501
We give a maximum principle proof of interior derivative estimates for the K\"ahler-Ricci flow, assuming local uniform bounds on the metric.
Comment: 10 pages
Comment: 10 pages
Externí odkaz:
http://arxiv.org/abs/1107.1853
Autor:
Borzellino, Joseph E., Sherman, Morgan
As an application of B\'ezout's theorem from algebraic geometry, we show that the standard notion of a trigonometric polynomial does not agree with a more naive, but reasonable notion of trigonometric polynomial.
Comment: 3 pages
Comment: 3 pages
Externí odkaz:
http://arxiv.org/abs/1102.3907
Autor:
Sherman, Morgan
Gotzmann's Persistence states that the growth of an arbitrary ideal can be controlled by comparing it to the growth of the lexicographic ideal. This is used, for instance, in finding equations which cut out the Hilbert scheme (of subschemes of $\math
Externí odkaz:
http://arxiv.org/abs/0710.0186
Autor:
Sherman, Morgan
In a recent paper Donaldson defines three operators on a space of Hermitian metrics on a complex projective manifold: $T, T_{\nu}, T_K.$ Iterations of these operators converge to balanced metrics, and these themselves approximate constant scalar curv
Externí odkaz:
http://arxiv.org/abs/0706.4338
Autor:
Sherman, Morgan
Given an ideal $I$ and a weight vector $w$ which partially orders monomials we can consider the initial ideal $\init_w (I)$ which has the same Hilbert function. A well known construction carries this out via a one-parameter subgroup of a $\GL_{n+1}$
Externí odkaz:
http://arxiv.org/abs/math/0512023
Autor:
Sherman, Morgan
Publikováno v:
In Journal of Algebra 2007 318(1):47-67
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.