Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Shenghan Gu"'
Publikováno v:
ACS Applied Materials & Interfaces. 14:23408-23419
Lithium-sulfur batteries stand out as the next-generation batteries because of their high energy density and low cost. However, the shuttle effect of lithium polysulfides (LiPSs), growth of lithium dendrites, and overuse of lithium resources still hi
Autor:
Helong Jiang, Shenghan Gu, Jiao Guo, Yan Dai, Wenji Zheng, Xiaobin Jiang, Xuemei Wu, Wu Xiao, Gaohong He, Xiangcun Li
Publikováno v:
Energy Storage Materials. 45:370-379
Publikováno v:
Additive Manufacturing Letters, Vol 11, Iss , Pp 100258- (2024)
This study seeks an early prediction method of crack failure location and orientation due to low cycle fatigue in additively manufactured metallic cellular materials by leveraging experimentally observed accumulation of plastic deformation. To study
Externí odkaz:
https://doaj.org/article/5cd64b7d634d425f90a43ff20fa108fc
Publikováno v:
SSRN Electronic Journal.
Autor:
Jiao Guo, Helong Jiang, Yan Dai, Shenghan Gu, Miao Yu, Xiaobin Jiang, Wenji Zheng, Gaohong He, Xiangcun Li
Publikováno v:
Chemical Engineering Journal. 434:134797
Publikováno v:
Data in Brief, Vol 51, Iss , Pp 109722- (2023)
In-process thermal melt pool images and post-fabrication porosity labels are acquired for Ti-6Al-4V thin-walled structure fabricated with OPTOMEC Laser Engineered Net Shaping (LENS™) 750 system. The data is collected for nondestructive thermal char
Externí odkaz:
https://doaj.org/article/fbaff39c08c740f2b714c3792398048d
Autor:
Xi Huang, Bo Liu, Shenghan Guo, Weihong Guo, Ke Liao, Guoku Hu, Wen Shi, Mitchell Kuss, Michael J. Duryee, Daniel R. Anderson, Yongfeng Lu, Bin Duan
Publikováno v:
Bioengineering & Translational Medicine, Vol 8, Iss 2, Pp n/a-n/a (2023)
Abstract Coronary artery disease (CAD) is one of the major cardiovascular diseases and represents the leading causes of global mortality. Developing new diagnostic and therapeutic approaches for CAD treatment are critically needed, especially for an
Externí odkaz:
https://doaj.org/article/5681e5f9533c47aa85434c25877a1afb
Publikováno v:
Sensors, Vol 23, Iss 11, p 5313 (2023)
In manufacturing, convolutional neural networks (CNNs) are widely used on image sensor data for data-driven process monitoring and quality prediction. However, as purely data-driven models, CNNs do not integrate physical measures or practical conside
Externí odkaz:
https://doaj.org/article/c93ceff1125549409330044b45fcd752