Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Shen, Rulin"'
Let $G$ be a finite group and $n_p(G)$ the number of Sylow $p$-subgroups of $G$. In this paper, we prove if $n_p(G)
Externí odkaz:
http://arxiv.org/abs/2406.15437
In 1987, the second author of this paper reported his conjecture, all finite simple groups $S$ can be characterized uniformly using the order of $S$ and the set of element orders in $S$, to Prof. J. G. Thompson. In their communications, Thompson pose
Externí odkaz:
http://arxiv.org/abs/2308.07183
Let $G$ be a finite group and $p$ a fixed prime divisor of $|G|$. Combining the nilpotence, the normality and the order of groups together, we prove that if every maximal subgroup of $G$ is nilpotent or normal or has $p'$-order, then (1) $G$ is solva
Externí odkaz:
http://arxiv.org/abs/2202.02322
Publikováno v:
In International Journal of Mechanical Sciences 1 August 2024 275
Autor:
Shen, Rulin1 (AUTHOR) shenrl@csu.edu.cn, Liu, Taizhi1 (AUTHOR), Liu, Hehua1 (AUTHOR), Zou, Xiangfu1 (AUTHOR) 134334@csu.edu.cn, Gong, Yanling1 (AUTHOR), Guo, Haibo1 (AUTHOR)
Publikováno v:
Polymers (20734360). May2024, Vol. 16 Issue 10, p1386. 21p.
Let $C(G)$ be the poset of cyclic subgroups of a finite group $G$ and let $\mathcal{P}$ be the class of $p$-groups of order $p^n$ ($n\geq 3$). Consider the function $\alpha:\mathcal{P}\longrightarrow (0, 1]$ given by $\alpha(G)=\frac{|C(G)|}{|G|}$. I
Externí odkaz:
http://arxiv.org/abs/2001.10521
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wan, Wenhu1 (AUTHOR), Shen, Rulin1 (AUTHOR) shenrl@csu.edu.cn, Tang, Juntao2 (AUTHOR), Xu, Yangbo1 (AUTHOR), Zou, Xiangfu1 (AUTHOR), Guo, Haibo1 (AUTHOR)
Publikováno v:
Polymer Composites. Sep2023, Vol. 44 Issue 9, p5396-5408. 13p.
Publikováno v:
In Chemical Engineering Journal 1 April 2022 433 Part 1
Autor:
Shen, Rulin, Zhou, Yuanyang
In this paper, we classify the finite simple groups with an abelian Sylow subgroup.
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/1510.03665