Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Shen, Junshan"'
The multi-modal posterior under unidentified nonparametric models yields poor mixing of Markov Chain Monte Carlo (MCMC), which is a stumbling block to Bayesian predictions. In this article, we conceptualize a prior informativeness threshold that is e
Externí odkaz:
http://arxiv.org/abs/2411.01382
This article tackles the old problem of prediction via a nonparametric transformation model (NTM) in a new Bayesian way. Estimation of NTMs is known challenging due to model unidentifiability though appealing because of its robust prediction capabili
Externí odkaz:
http://arxiv.org/abs/2205.14504
Bayesian paradigm takes advantage of well fitting complicated survival models and feasible computing in survival analysis owing to the superiority in tackling the complex censoring scheme, compared with the frequentist paradigm. In this chapter, we a
Externí odkaz:
http://arxiv.org/abs/2109.03713
This paper considers the empirical likelihood (EL) construction of confidence intervals for a linear functional based on right censored lifetime data. Many of the results in literature show that log EL has a limiting scaled chi-square distribution, w
Externí odkaz:
http://arxiv.org/abs/1203.5955
Publikováno v:
In Computational Statistics and Data Analysis January 2016 93:285-293
Publikováno v:
Journal of the American Statistical Association, 2016 Jun 01. 111(514), 646-655.
Externí odkaz:
http://www.jstor.org/stable/24739558
Efficient estimation for the proportional hazards model with competing risks and current status data
Autor:
SUN, Jianguo, SHEN, Junshan
Publikováno v:
The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 2009 Dec 01. 37(4), 592-606.
Externí odkaz:
https://www.jstor.org/stable/25653500
Publikováno v:
In Journal of Statistical Planning and Inference 2010 140(7):1671-1690
Autor:
Wang, Qihua, Shen, Junshan
Publikováno v:
In Journal of Multivariate Analysis 2008 99(5):928-948
Autor:
Shen, Junshan, He, Shuyuan *
Publikováno v:
In Journal of Statistical Planning and Inference 2006 136(1):90-107