Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Shelley, Leila"'
Autor:
Yang, Zhuolin, Noble, David J., Shelley, Leila, Berger, Thomas, Jena, Raj, McLaren, Duncan B., Burnet, Neil G., Nailon, William H.
Publikováno v:
In Radiotherapy and Oncology June 2023 183
Autor:
Berger, Thomas, Noble, David J., Yang, Zhuolin, Shelley, Leila E.A., McMullan, Thomas, Bates, Amy, Thomas, Simon, Carruthers, Linda J., Beckett, George, Duffton, Aileen, Paterson, Claire, Jena, Raj, McLaren, Duncan B., Burnet, Neil G., Nailon, William H.
Publikováno v:
In Physics and Imaging in Radiation Oncology January 2023 25
Autor:
Berger, Thomas, Noble, David J., Shelley, Leila E.A., McMullan, Thomas, Bates, Amy, Thomas, Simon, Carruthers, Linda J., Beckett, George, Duffton, Aileen, Paterson, Claire, Jena, Raj, McLaren, Duncan B., Burnet, Neil G., Nailon, William H.
Publikováno v:
In Physics and Imaging in Radiation Oncology October 2022 24:95-101
Autor:
Berger, Thomas, Payan, Neree, Fleury, Emmanuelle, Davey, Angela, Bryce-Atkinson, Abigail, Vasquez Osorio, Eliana, Yang, Zhuolin, McMullan, Thomas, Shelley, Leila E.A., Gasnier, Anne, Bertholet, Jenny, Aznar, Marianne C., Nailon, William H.
Publikováno v:
In Physics and Imaging in Radiation Oncology October 2022 24:129-135
Autor:
Shelley, Leila E.A., Sutcliffe, Michael P.F., Thomas, Simon J., Noble, David J., Romanchikova, Marina, Harrison, Karl, Bates, Amy M., Burnet, Neil G., Jena, Raj
Publikováno v:
In Physics and Imaging in Radiation Oncology April 2020 14:87-94
Autor:
Noble, David J., Yeap, Ping-Lin, Seah, Shannon Y.K., Harrison, Karl, Shelley, Leila E.A., Romanchikova, Marina, Bates, Amy M., Zheng, Yaolin, Barnett, Gillian C., Benson, Richard J., Jefferies, Sarah J., Thomas, Simon J., Jena, Raj, Burnet, Neil G.
Publikováno v:
In Radiotherapy and Oncology January 2019 130:32-38
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Aldraimli, Mahmoud, Osman, Sarah, Grishchuck, Diana, Ingram, Samuel, Lyon, Robert, Mistry, Anil, Oliveira, Jorge, Samuel, Robert, Shelley, Leila EA, Soria, Daniele, Dwek, Miriam V, Aguado-Barrera, Miguel E, Azria, David, Chang-Claude, Jenny, Dunning, Alison, Giraldo, Alexandra, Green, Sheryl, Gutiérrez-Enríquez, Sara, Herskind, Carsten, Van Hulle, Hans, Lambrecht, Maarten, Lozza, Laura, Rancati, Tiziana, Reyes, Victoria, Rosenstein, Barry S, De Ruysscher, Dirk, De Santis, Maria C, Seibold, Petra, Sperk, Elena, Symonds, R Paul, Stobart, Hilary, Taboada-Valadares, Begoña, Talbot, Christopher J, Vakaet, Vincent JL, Vega, Ana, Veldeman, Liv, Veldwijk, Marlon R, Webb, Adam, Weltens, Caroline, West, Catharine M, Chaussalet, Thierry J, Rattay, Tim, REQUITE Consortium
PURPOSE: Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for rad
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9530658cff57a1da42e592ffc08b9f64
https://www.repository.cam.ac.uk/handle/1810/338713
https://www.repository.cam.ac.uk/handle/1810/338713
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Aldraimli, Mahmoud, Soria, Daniele, Grishchuck, Diana, Ingram, Samuel, Lyon, Robert, Mistry, Anil, Oliveira, Jorge, Samuel, Robert, Shelley, Leila E.A., Osman, Sarah, Dwek, Miriam V., Azria, David, Chang-Claude, Jenny, Gutiérrez-Enríquez, Sara, De Santis, Maria Carmen, Rosenstein, Barry S., De Ruysscher, Dirk, Sperk, Elena, Symonds, R Paul, Stobart, Hilary, Vega, Ana, Veldeman, Liv, Webb, Adam, Talbot, Christopher J., West, Catharine M., Rattay, Tim, Chaussalet, Thierry J., REQUITE Consortium
Publikováno v:
Computers in Biology and Medicine, 135:104624. Elsevier Science
The prediction by classification of side effects incidence in a given medical treatment is a common challenge in medical research. Machine Learning (ML) methods are widely used in the areas of risk prediction and classification. The primary objective
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b961c2f8a6f76a66fd171ba49eb2c8c