Zobrazeno 1 - 10
of 32 666
pro vyhledávání: '"Sheldon, P. A."'
The use of machine learning methods in high energy physics typically relies on large volumes of precise simulation for training. As machine learning models become more complex they can become increasingly sensitive to differences between this simulat
Externí odkaz:
http://arxiv.org/abs/2410.13947
Vehicle telematics provides granular data for dynamic driving risk assessment, but current methods often rely on aggregated metrics (e.g., harsh braking counts) and do not fully exploit the rich time-series structure of telematics data. In this paper
Externí odkaz:
http://arxiv.org/abs/2412.08106
Autor:
Bocquet, S., Grandis, S., Krause, E., To, C., Bleem, L. E., Klein, M., Mohr, J. J., Schrabback, T., Alarcon, A., Alves, O., Amon, A., Andrade-Oliveira, F., Baxter, E. J., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Cawthon, R., Chang, C., Chen, R., Choi, A., Cordero, J., Crocce, M., Davis, C., DeRose, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Fang, X., Ferté, A., Fosalba, P., Friedrich, O., Frieman, J., Gatti, M., Giannini, G., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Huterer, D., Jarvis, M., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., MacCrann, N., McCullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Pandey, S., Park, Y., Porredon, A., Prat, J., Raveri, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Rykoff, E. S., Sánchez, C., Sanchez, J., Secco, L. F., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Troxel, M. A., Tutusaus, I., Varga, T. N., Weaverdyck, N., Wechsler, R. H., Wu, H. -Y., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Ade, P. A. R., Aguena, M., Allam, S., Allen, S. W., Anderson, A. J., Ansarinejad, B., Austermann, J. E., Bayliss, M., Beall, J. A., Bender, A. N., Benson, B. A., Bianchini, F., Brodwin, M., Brooks, D., Bryant, L., Burke, D. L., Canning, R. E. A., Carlstrom, J. E., Carretero, J., Castander, F. J., Chang, C. L., Chaubal, P., Chiang, H. C., Chou, T-L., Citron, R., Moran, C. Corbett, Costanzi, M., Crawford, T. M., Crites, A. T., da Costa, L. N., Pereira, M. E. S., Davis, T. M., de Haan, T., Dobbs, M. A., Doel, P., Everett, W., Farahi, A., Flaugher, B., Flores, A. M., Floyd, B., Gallicchio, J., Gaztanaga, E., George, E. M., Gladders, M. D., Gupta, N., Gutierrez, G., Halverson, N. W., Hinton, S. R., Hlavacek-Larrondo, J., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., James, D. J., Kéruzoré, F., Khullar, G., Kim, K., Knox, L., Kraft, R., Kuehn, K., Lahav, O., Lee, A. T., Lee, S., Li, D., Lidman, C., Lima, M., Lowitz, A., Mahler, G., Mantz, A., Marshall, J. L., McDonald, M., McMahon, J. J., Mena-Fernández, J., Meyer, S. S., Miquel, R., Montgomery, J., Natoli, T., Nibarger, J. P., Noble, G. I., Novosad, V., Ogando, R. L. C., Padin, S., Paschos, P., Patil, S., Malagón, A. A. Plazas, Pryke, C., Reichardt, C. L., Roberson, J., Romer, A. K., Romero, C., Ruhl, J. E., Saliwanchik, B. R., Salvati, L., Samuroff, S., Sanchez, E., Santiago, B., Sarkar, A., Saro, A., Schaffer, K. K., Sharon, K., Sievers, C., Smecher, G., Smith, M., Somboonpanyakul, T., Sommer, M., Stalder, B., Stark, A. A., Stephen, J., Strazzullo, V., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, C., Tucker, D. L., Veach, T., Vieira, J. D., von der Linden, A., Wang, G., Whitehorn, N., Wu, W. L. K., Yefremenko, V., Young, M., Zebrowski, J. A., Zohren, H., Collaboration, DES, Collaboration, SPT
Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest an
Externí odkaz:
http://arxiv.org/abs/2412.07765
Bayesian reasoning in linear mixed-effects models (LMMs) is challenging and often requires advanced sampling techniques like Markov chain Monte Carlo (MCMC). A common approach is to write the model in a probabilistic programming language and then sam
Externí odkaz:
http://arxiv.org/abs/2410.24079
Autor:
McCullough, J., Amon, A., Legnani, E., Gruen, D., Roodman, A., Friedrich, O., MacCrann, N., Becker, M. R., Myles, J., Dodelson, S., Samuroff, S., Blazek, J., Prat, J., Honscheid, K., Pieres, A., Ferté, A., Alarcon, A., Drlica-Wagner, A., Choi, A., Navarro-Alsina, A., Campos, A., Malagón, A. A. Plazas, Porredon, A., Farahi, A., Ross, A. J., Rosell, A. Carnero, Yin, B., Flaugher, B., Yanny, B., Sánchez, C., Chang, C., Davis, C., To, C., Doux, C., Brooks, D., James, D. J., Cid, D. Sanchez, Hollowood, D. L., Huterer, D., Rykoff, E. S., Gaztanaga, E., Huff, E. M., Suchyta, E., Sheldon, E., Sanchez, E., Tarsitano, F., Andrade-Oliveira, F., Castander, F. J., Bernstein, G. M., Gutierrez, G., Giannini, G., Tarle, G., Diehl, H. T., Huang, H., Harrison, I., Sevilla-Noarbe, I., Tutusaus, I., Ferrero, I., Elvin-Poole, J., Marshall, J. L., Muir, J., Weller, J., Zuntz, J., Carretero, J., DeRose, J., Frieman, J., Cordero, J., De Vicente, J., García-Bellido, J., Mena-Fernández, J., Eckert, K., Romer, A. K., Bechtol, K., Herner, K., Kuehn, K., Secco, L. F., da Costa, L. N., Paterno, M., Soares-Santos, 21 M., Gatti, M., Raveri, M., Yamamoto, M., Smith, M., Kind, M. Carrasco, Troxel, M. A., Aguena, M., Jarvis, M., Swanson, M. E. C., Weaverdyck, N., Lahav, O., Doel, P., Wiseman, P., Miquel, R., Gruendl, R. A., Cawthon, R., Allam, S., Hinton, S. R., Bridle, S. L., Bocquet, S., Desai, S., Pandey, S., Everett, S., Lee, S., Shin, T., Palmese, A., Conselice, C., Burke, D. L., Buckley-Geer, E., Lima, M., Vincenzi, M., Pereira, M. E. S., Crocce, M., Schubnell, M., Jeffrey, N., Alves, O., Vikram, V., Zhang, Y., Collaboration, DES
Modeling the intrinsic alignment (IA) of galaxies poses a challenge to weak lensing analyses. The Dark Energy Survey is expected to be less impacted by IA when limited to blue, star-forming galaxies. The cosmological parameter constraints from this b
Externí odkaz:
http://arxiv.org/abs/2410.22272
Autor:
Hallett, D., Wiercinski, J., Hallacy, L., Sheldon, S., Dost, R., Martin, N., Fenzl, A., Farrer, I., Verma, A., Cygorek, M., Gauger, E. M., Skolnick, M. S., Wilson, L. R.
We report the measurement of collective emission from a pair of independently tuneable InAs quantum dots embedded in a nanophotonic waveguide. A split diode structure allows independent electrical control of the quantum dot transition energies over a
Externí odkaz:
http://arxiv.org/abs/2410.17890
Autor:
Sheldon, Zachary, Kumar, Peeyush
Publikováno v:
Annual Joint Meeting of Society of Economic Anthropology and Society for the Anthropology of Work 2024
This paper explores the intersection of economic anthropology and generative artificial intelligence (GenAI). It examines how large language models (LLMs) can simulate human decision-making and the inductive biases present in AI research. The study i
Externí odkaz:
http://arxiv.org/abs/2410.15238
Autor:
Mullins, Brett, Fuentes, Miguel, Xiao, Yingtai, Kifer, Daniel, Musco, Cameron, Sheldon, Daniel
Differential privacy is the dominant standard for formal and quantifiable privacy and has been used in major deployments that impact millions of people. Many differentially private algorithms for query release and synthetic data contain steps that re
Externí odkaz:
http://arxiv.org/abs/2410.01091
Accurate loss reserving is crucial in Property and Casualty (P&C) insurance for financial stability, regulatory compliance, and effective risk management. We propose a novel micro-level Cox model based on hidden Markov models (HMMs). Initially formul
Externí odkaz:
http://arxiv.org/abs/2409.12896
We obtain an infinite-dimensional cone of singular twisted Hilbert spaces $Z(\varphi)$ which are isomorphic to their duals but not to their conjugate duals. We do that by showing that the subset of all bi-Lipschitz maps from $[0, \infty)$ to $\mathbb
Externí odkaz:
http://arxiv.org/abs/2408.07827