Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Sheiham, Desmond"'
Autor:
Ranicki, Andrew, Sheiham, Desmond
Publikováno v:
Geom. Topol. 10 (2006) 1761-1853
The classification of high-dimensional mu-component boundary links motivates decomposition theorems for the algebraic K-groups of the group ring A[F_mu] and the noncommutative Cohn localization Sigma^{-1}A[F_mu], for any mu>0 and an arbitrary ring A,
Externí odkaz:
http://arxiv.org/abs/math/0508405
Autor:
Sheiham, Desmond
If R is a triangular 2x2 matrix ring, the columns, P and Q, are projective left R-modules. We describe the universal localization of R which makes invertible an R-module morphism P --> Q, generalizing a theorem of A.Schofield. We also describe the un
Externí odkaz:
http://arxiv.org/abs/math/0407497
Autor:
Sheiham, Desmond
We use the Blanchfield-Duval form to define complete invariants for the cobordism group C_{2q-1}(F_\mu) of (2q-1)-dimensional \mu-component boundary links (for q\geq2). The author solved the same problem in math.AT/0110249 via Seifert forms. Although
Externí odkaz:
http://arxiv.org/abs/math/0404229
Autor:
Sheiham, Desmond
Publikováno v:
Journal of Algebra, Vol 270 (2003) Issue 1, 261-280
We compute the Whitehead groups of the associative rings in a class which includes (twisted) formal power series rings and the augmentation localizations of group rings and polynomial rings. For any associative ring A, we obtain an invariant of a pai
Externí odkaz:
http://arxiv.org/abs/math/0209311
Autor:
Sheiham, Desmond
Publikováno v:
Journal of the London Mathematical Society (2) Vol 64 (2001) no.1 pp13-28
Almkvist proved that for a commutative ring A the characteristic polynomial of an endomorphism \alpha:P \to P of a finitely generated projective A-module determines (P,\alpha) up to extensions. For a non-commutative ring A the generalized characteris
Externí odkaz:
http://arxiv.org/abs/math/0104158
Autor:
Sheiham, Desmond
Publikováno v:
In Journal of Algebra 2003 270(1):261-280
Autor:
Sheiham, Desmond
Publikováno v:
Memoirs of the American Mathematical Society. 165
An n-dimensional \mu-component boundary link is a codimension 2 embedding of spheres L=\bigsqcup_{\mu}S^n \subset S^{n+2} such that there exist \mu disjoint oriented embedded (n+1)-manifolds which span the components of L. An F_\mu-link is a boundary
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.