Zobrazeno 1 - 10
of 132
pro vyhledávání: '"Shargorodsky, Eugene"'
Let $X$ be a Banach function space over the unit circle such that the Riesz projection $P$ is bounded on $X$ and let $H[X]$ be the abstract Hardy space built upon $X$. We show that the essential norm of the Toeplitz operator $T(a):H[X]\to H[X]$ coinc
Externí odkaz:
http://arxiv.org/abs/2408.13907
An extension of the Liouville theorem for Fourier multipliers to sub-exponentially growing solutions
We study the equation $m(D)f = 0$ in a large class of sub-exponentially growing functions. Under appropriate restrictions on $m \in C(\mathbb{R}^n)$, we show that every such solution can be analytically continued to a sub-exponentially growing entire
Externí odkaz:
http://arxiv.org/abs/2401.12876
The aim of the paper is to highlight some open problems concerning approximation properties of Hardy spaces. We also present some results on the bounded compact and the dual compact approximation properties (shortly, BCAP and DCAP) of such spaces, to
Externí odkaz:
http://arxiv.org/abs/2308.04072
The classical Liouville property says that all bounded harmonic functions in $\mathbb{R}^n$, i.e.\ all bounded functions satisfying $\Delta f = 0$, are constant. In this paper we obtain necessary and sufficient conditions on the symbol of a Fourier m
Externí odkaz:
http://arxiv.org/abs/2211.08929
Publikováno v:
In Linear Algebra and Its Applications 15 September 2024 697:82-92
Publikováno v:
In Indagationes Mathematicae January 2024 35(1):143-158
In a domain $\Omega\subset \mathbb{R}^{\mathbf{N}}$ we consider a selfadjoint operator $\mathbf{T}=\mathfrak{A}^*P\mathfrak{A} ,$ where $\mathfrak{A}$ is a pseudodifferential operator of order $-l=-\mathbf{N}/2$ and $P=V\mu_{\Sigma}$ is a singular si
Externí odkaz:
http://arxiv.org/abs/2011.14877
Autor:
Shargorodsky, Eugene, Sharia, Teo
Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, $\xi$ be a random variable on $(\Omega, \mathcal{F}, \mathbf{P})$, $\mathcal{G}$ be a sub-$\sigma$-algebra of $\mathcal{F}$, and let $\mathbf{E}^\mathcal{G} = \mathbf{ E}(\cdot | \mathca
Externí odkaz:
http://arxiv.org/abs/2008.06925
Autor:
Shargorodsky, Eugene, Sharia, Teo
We prove a theorem, which generalises C. Franchetti's estimate for the norm of a projection onto a rich subspace of $L^p([0, 1])$ and the authors' related estimate for compact operators on $L^p([0, 1])$, $1 \le p < \infty$.
Externí odkaz:
http://arxiv.org/abs/2008.06927