Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Sharan, Vismay"'
Autor:
Cheek, Timothy, Gilman, Pico, Jaber, Kareem, Miller, Steven J., Sharan, Vismay, Tomé, Marie-Hélène
For a fixed elliptic curve $E$ without complex multiplication, $a_p := p+1 - \#E(\mathbb{F}_p)$ is $O(\sqrt{p})$ and $a_p/2\sqrt{p}$ converges to a semicircular distribution. Michel proved that for a one-parameter family of elliptic curves $y^2 = x^3
Externí odkaz:
http://arxiv.org/abs/2409.18224
Autor:
Cheek, Timothy, Cooper, Joseph, Gilman, Pico, Iosevich, Alex, Jaber, Kareem, Palsson, Eyvindur, Sharan, Vismay, Shuffelton, Jenna, Tomé, Marie-Hélène
We study a generalization of the Erd\H{o}s-Falconer distance problem over finite fields. For a graph $G$, two embeddings $p, p': V(G) \to \mathbb{F}_q^d$ of a graph $G$ are congruent if for all edges $(v_i, v_j)$ of $G$ we have that $||p(v_i) - p(v_j
Externí odkaz:
http://arxiv.org/abs/2408.07912
Given a finite group $G$, the solubilizer of an element $x$, denoted by $\Sol_G(x)$, is the set of all elements $y$ such that $\langle x, y\rangle$ is a soluble subgroup of $G$. In this paper, we provide a classification for all solubilizers of eleme
Externí odkaz:
http://arxiv.org/abs/2309.09104