Zobrazeno 1 - 1
of 1
pro vyhledávání: '"Shapiro, Kayla"'
We propose two practical non-convex approaches for learning near-isometric, linear embeddings of finite sets of data points. Given a set of training points $\mathcal{X}$, we consider the secant set $S(\mathcal{X})$ that consists of all pairwise diffe
Externí odkaz:
http://arxiv.org/abs/1601.00062