Zobrazeno 1 - 10
of 228
pro vyhledávání: '"Shapira, Assaf"'
We discuss the relaxation time (inverse spectral gap) of the one dimensional $O(N)$ model, for all $N$ and with two types of boundary conditions. We see how its low temperature asymptotic behavior is affected by the topology. The combination of the s
Externí odkaz:
http://arxiv.org/abs/2407.12610
We investigate a $2d$-conservative lattice gas exhibiting a dynamical active-absorbing phase transition with critical density $\rho_c$. We derive the hydrodynamic equation for this model, showing that all critical exponents governing the large scale
Externí odkaz:
http://arxiv.org/abs/2403.09324
Autor:
Shapira, Assaf, author
Publikováno v:
Political Parties and the Crisis of Democracy : Organization, Resilience, and Reform, 2024, ill.
Externí odkaz:
https://doi.org/10.1093/oso/9780198888734.003.0013
Autor:
Shapira, Assaf, Wiese, Kay Joerg
There is a plethora of 1-dimensional advected systems with an absorbing boundary: the Toom model of anchored interfaces, the directed exclusion process where in addition to diffusion particles and holes can jump over their right neighbor, simple diff
Externí odkaz:
http://arxiv.org/abs/2302.13749
Autor:
Shapira, Assaf
We study a family of conservative interacting particle systems with degenerate rates called noncooperative kinetically constrained lattice gases. We prove for all models in this family the diffusive scaling of the relaxation time, the positivity of t
Externí odkaz:
http://arxiv.org/abs/2301.13559
Autor:
Shapira, Assaf, Wiese, Kay Jörg
Publikováno v:
SciPost Phys. 9, 063 (2020)
We give a simplified proof for the equivalence of loop-erased random walks to a lattice model containing two complex fermions, and one complex boson. This equivalence works on an arbitrary directed graph. Specifying to the $d$-dimensional hypercubic
Externí odkaz:
http://arxiv.org/abs/2006.07899
Autor:
Shapira, Assaf
This note discusses two problems related to the Fredrickson-Andersen one spin facilitated model in stationarity. The first, considered in 2008 in a paper of Cancrini, Martinelli, Roberto and Toninelli, is the spectral gap of the model's infinitesimal
Externí odkaz:
http://arxiv.org/abs/2005.13327
Autor:
Helmuth, Tyler, Shapira, Assaf
The determination of the Hausdorff dimension of the scaling limit of loop-erased random walk is closely related to the study of the one-point function of loop-erased random walk, i.e., the probability a loop-erased random walk passes through a given
Externí odkaz:
http://arxiv.org/abs/2003.10928
Autor:
Shapira, Assaf
This paper concerns with the hydrodynamic limit of the Kob-Andersen model, an interacting particle system that has been introduced by physicists in order to explain glassy behavior, and widely studies since. We will see that the density profile evolv
Externí odkaz:
http://arxiv.org/abs/2003.08495
Autor:
Ertul, Anatole, Shapira, Assaf
The Kob-Andersen model is a fundamental example of a kinetically constrained lattice gas, that is, an interacting particle system with Kawasaki type dynamics and kinetic constraints. In this model, a particle is allowed to jump when sufficiently many
Externí odkaz:
http://arxiv.org/abs/2003.02531