Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Shao-Yuan Huang"'
Autor:
Qian-Qian Liao, Ze-Feng Zhu, Ke-Wei Zhu, Zhe Yang, Gui-Li Liu, Xiang-Qing Li, Run Ge, Hong-Zhen Xu, Xuan Jiang, Yan-Feng Tang, Yan Chen, Zhi-Ling Yu, Zeng-Zhen Liao, Shao-Yuan Huang, Yue Qiu, Bin-Jing Zhao, Yong-Fei Fu, Dong Qin
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-18 (2024)
Abstract Pneumonia is a key criterion for the severity of COVID-19. Whether COVID-19 symptoms are indicators of pneumonia in patients infected with SARS-CoV-2 Omicron variants is unclear. 6200 non-hospitalized patients with COVID-19 from three sites
Externí odkaz:
https://doaj.org/article/ae3ea50c17274c50a2e83b00703dc0a8
Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity
Autor:
Shao-Yuan Huang, Min-Shu Hwang
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2021, Iss 41, Pp 1-29 (2021)
In this paper, we study the shape of bifurcation curve $S_{L}$ of positive solutions for the Minkowski-curvature problem \begin{equation*} \begin{cases} -\left( \dfrac{u^{\prime }(x)}{\sqrt{1-\left( {u^{\prime }(x)}\right) ^{2}}} \right) ^{\prime }=\
Externí odkaz:
https://doaj.org/article/8d3c542b630543bcbcfe71340adaadaf
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2019, Iss 99, Pp 1-25 (2019)
We study the global bifurcation and exact multiplicity of positive solutions for \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda f_{\varepsilon }(u)=0\text{,}\; \;-10$ is a bifurcation parameter, $\varepsilon \in \Theta $ is an evolutio
Externí odkaz:
https://doaj.org/article/16c137d32fd64b86b6c5a0098b4a861e
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2018, Iss 85, Pp 1-30 (2018)
We study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Neumann–Robin boundary value problem \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda f(u(x))=0,\quad 00$ is a bifurcation pa
Externí odkaz:
https://doaj.org/article/9d80bb6c581946598e8209cf80f8661e
Autor:
Qin-You Tan, Qian Hu, Sheng-Nan Zhu, Lu-Lu Jia, Juan Xiao, Hua-Zhen Su, Shao-Yuan Huang, Jing Zhang, Junfei Jin
Publikováno v:
Drug Delivery, Vol 25, Iss 1, Pp 1213-1223 (2018)
Triptolide, the predominant biologically active component of the Chinese herb Tripterygium wilfordii Hook f., possesses numerous pharmacological activities, including anti-inflammatory, anti-fertility, anti-neoplastic, and immunosuppressive effects.
Externí odkaz:
https://doaj.org/article/adf214a4b85148e091ed44f05d04a768
Autor:
Shao-Yuan Huang, Shin-Hwa Wang
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2016, Iss 94, Pp 1-21 (2016)
We study a variational property on the evolutionary bifurcation curves for the one-dimensional perturbed Gelfand problem from combustion theory \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda \exp \left( \frac{au}{a+u}\right) =0, & -10$
Externí odkaz:
https://doaj.org/article/bc721266a54843efaf5fec66e0d9e06b
Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity
Autor:
Min-Shu Hwang, Shao-Yuan Huang
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2021, Iss 41, Pp 1-29 (2021)
In this paper, we study the shape of bifurcation curve $S_{L}$ of positive solutions for the Minkowski-curvature problem \begin{equation*} \begin{cases} -\left( \dfrac{u^{\prime }(x)}{\sqrt{1-\left( {u^{\prime }(x)}\right) ^{2}}} \right) ^{\prime }=\
Autor:
Shao-Yuan Huang
Publikováno v:
Journal of Dynamics and Differential Equations. 34:2157-2172
In this paper, we study global bifurcation diagrams and the exact multiplicity of positive solutions for Minkowski-curvature problem $$\begin{aligned} \left\{ \begin{array}{l} -\left( u^{\prime }/\sqrt{1-{u^{\prime }}^{2}}\right) ^{\prime }=\lambda \
Autor:
Shao-Yuan Huang, Sui Sun Cheng
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2013, Iss 38, Pp 1-18 (2013)
Monotonicity of solutions is an important property in the investigation of oscillatory behaviors of differential equations. A number of papers provide some existence criteria for eventually positive increasing solutions. However, relatively little at
Externí odkaz:
https://doaj.org/article/187f688370bb407fbe79834fbd742555
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2019, Iss 99, Pp 1-25 (2019)
We study the global bifurcation and exact multiplicity of positive solutions for \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda f_{\varepsilon }(u)=0\text{,}\; \;-10$ is a bifurcation parameter, $\varepsilon \in \Theta $ is an evolutio