Zobrazeno 1 - 10
of 394
pro vyhledávání: '"Shao Zehui"'
Autor:
Zhu Enqiang, Shao Zehui
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 41, Iss 2, Pp 427-439 (2021)
The star k-edge-coloring of graph G is a proper edge coloring using k colors such that no path or cycle of length four is bichromatic. The minimum number k for which G admits a star k-edge-coloring is called the star chromatic index of G, denoted by
Externí odkaz:
https://doaj.org/article/2857b67310094d039ffc56bb387f2b92
Publikováno v:
Open Chemistry, Vol 18, Iss 1, Pp 39-49 (2020)
For a simple graph G, the atom–bond connectivity index (ABC) of G is defined as ABC(G) = ∑uv∈ E(G)d(u)+d(v)−2d(u)d(v), $\sum_{uv\in{}E(G)} \sqrt{\frac{d(u)+d(v)-2}{d(u)d(v)}},$where d(v) denotes the degree of vertex v of G. In this paper, we
Externí odkaz:
https://doaj.org/article/a2e0cc9aaae542c7847aac3430162686
Autor:
Deng Fei, Jiang Huiqin, Liu Jia-Bao, Poklukar Darja Rupnik, Shao Zehui, Wu Pu, Žerovnik Janez
Publikováno v:
Open Chemistry, Vol 17, Iss 1, Pp 448-455 (2019)
The Sanskruti index of a graph G is defined as S(G)=∑uv∈E(G)sG(u)sG(v)sG(u)+sG(v)−23,$$\begin{align*}S(G)=\sum_{uv\in{}E(G)}{\left(\frac{s_G(u)s_G(v)}{s_G(u)+s_G(v)-2}\right)}^3, \end{align*}$$where sG(u) is the sum of the degrees of the neighb
Externí odkaz:
https://doaj.org/article/3c25535212664e628f2efe20ddbe3d40
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 39, Iss 2, Pp 455-472 (2019)
Let G = (V, E) be a graph and let f : V (G) → {0, 1, 2} be a function. A vertex v is said to be protected with respect to f, if f(v) > 0 or f(v) = 0 and v is adjacent to a vertex of positive weight. The function f is a co-Roman dominating function
Externí odkaz:
https://doaj.org/article/a4fbbfb533824cb6b2ad0b54183f5a3d
After Strassen presented the first sub-cubic matrix multiplication algorithm, many Strassen-like algorithms are presented. Most of them with low asymptotic cost have large hidden leading coefficient which are thus impractical. To reduce the leading c
Externí odkaz:
http://arxiv.org/abs/2203.16053
In this work, we consider a generalization of the nonlinear Langevin equation of fractional orders with boundary value conditions. The existence and uniqueness of solutions are studied by using results of the fixed point theory. Moreover, the previou
Externí odkaz:
http://arxiv.org/abs/2004.03542
For a nondecreasing sequence of integers $S=(s_1, s_2, \ldots)$ an $S$-packing $k$-coloring of a graph $G$ is a mapping from $V(G)$ to $\{1, 2,\ldots,k\}$ such that vertices with color $i$ have pairwise distance greater than $s_i$. By setting $s_i =
Externí odkaz:
http://arxiv.org/abs/1909.08285
Publikováno v:
Bulletin of the Iranian Mathematical Society (2021)
A double Roman dominating function of a graph $G$ is a function $f:V(G)\rightarrow \{0,1,2,3\}$ having the property that for each vertex $v$ with $f(v)=0$, there exists $u\in N(v)$ with $f(u)=3$, or there are $u,w\in N(v)$ with $f(u)=f(w)=2$, and if
Externí odkaz:
http://arxiv.org/abs/1909.01775
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
For a function $f : V(G ) \rightarrow \{0, 1, 2\}$ we denote by $V_i$ the set of vertices to which the value $i$ is assigned by $f$, i.e. $V_i = \{ x \in V (G ) : f(x ) = i \}$. If a function $f: V(G) \rightarrow \{0,1,2\}$ satisfying the condition t
Externí odkaz:
http://arxiv.org/abs/1810.00246