Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Shao, Kerun"'
Autor:
Shao, Kerun
We study the existence of global solutions to semilinear wave equations on exterior domains $\mathbb{R}^n\setminus\mathcal{K}$, $n\geq2$, with small initial data and nonlinear terms $F(\partial u)$ where $F\in C^\kappa$ and $\partial^{\leq\kappa}F(0)
Externí odkaz:
http://arxiv.org/abs/2412.05544
For small-amplitude semilinear wave equations with power type nonlinearity on the first-order spatial derivative, the expected sharp upper bound on the lifespan of solutions is obtained for both critical cases and subcritical cases, for all spatial d
Externí odkaz:
http://arxiv.org/abs/2406.02098
Autor:
Shao, Kerun, Wang, Chengbo
Considering $1+n$ dimensional semilinear wave equations with energy supercritical powers $p> 1+4/(n-2)$, we obtain global solutions for any initial data with small norm in $H^{s_c}\times H^{s_c-1}$, under the technical smooth condition $p>s_c-\bar{s}
Externí odkaz:
http://arxiv.org/abs/2211.01594
Publikováno v:
Discrete & Continuous Dynamical Systems: Series A; Feb2025, Vol. 45 Issue 2, p1-15, 15p