Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Shanthi Saubhagya"'
Publikováno v:
Applied Sciences, Vol 14, Iss 3, p 999 (2024)
Meteorological time series, such as rainfall data, show spatiotemporal characteristics and are often faced with the problem of containing missing values. Discarding missing values or modeling data with missing values causes negative impacts on the ac
Externí odkaz:
https://doaj.org/article/a9cd496d3a624821ad757008e271a9d0
Publikováno v:
Engineering Proceedings, Vol 39, Iss 1, p 6 (2023)
The study proposes an ensemble spatiotemporal methodology for short-term rainfall forecasting using several data mining techniques. Initially, Spatial Kriging and CNN methods were employed to generate two spatial predictor variables. The three days p
Externí odkaz:
https://doaj.org/article/e9f9122ed7164f3b9deece6aff9fce63
Autor:
Saubhagya, Shanthi1 (AUTHOR) pemantha@stat.cmb.ac.lk, Tilakaratne, Chandima1 (AUTHOR) shanthi@stu.cmb.ac.lk, Lakraj, Pemantha1 (AUTHOR), Mammadov, Musa2 (AUTHOR) musa.mammadov@deakin.edu.au
Publikováno v:
Forecasting. Dec2024, Vol. 6 Issue 4, p1124-1151. 28p.
Publikováno v:
Applied Sciences (2076-3417); Feb2024, Vol. 14 Issue 3, p999, 16p
Publikováno v:
Engineering Proceedings; 2023, Vol. 39, p6, 10p