Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Shanta Laishram"'
Publikováno v:
Symmetry, Vol 15, Iss 4, p 852 (2023)
For a nonnegative integer p, we give explicit formulas for the p-Frobenius number and the p-genus of generalized Fibonacci numerical semigroups. Here, the p-numerical semigroup Sp is defined as the set of integers whose nonnegative integral linear co
Externí odkaz:
https://doaj.org/article/4141f6b6e64c4af7a5b61e8a82e289b9
Publikováno v:
International Journal of Number Theory. :1-38
For the superelliptic curves of the form [Formula: see text] with [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] a prime, Das, Laishram, Saradha and Edis showed that the superelliptic curve has
Autor:
Ankita Jindal, Shanta Laishram
Publikováno v:
Journal of Number Theory. 241:387-429
Publikováno v:
International Journal of Number Theory
We show that if [Formula: see text] is a Lucas sequence, then the largest [Formula: see text] suc that [Formula: see text] with [Formula: see text], where [Formula: see text] is the [Formula: see text]th Catalan number satisfies [Formula: see text].
Publikováno v:
Publicationes Mathematicae Debrecen. 95:1-17
Autor:
Shanta Laishram, Pallab Kanti Dey
Publikováno v:
Publicationes Mathematicae Debrecen. 94:319-336
Publikováno v:
Funct. Approx. Comment. Math. 62, no. 2 (2020), 143-164
For integers $a_0,a_1,\ldots,a_n$ with $|a_0a_n|=1$ and either $\alpha =u$ with $1\leq u \leq 50$ or $\alpha=u+ \frac{1}{2}$ with $1 \leq u \leq 45$, we prove that $\psi_n^{(\alpha)}(x;a_0,a_1,\cdots,a_n)$ is irreducible except for an explicit finite
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01234c69edba109c90dd64dfbeb795e6
https://projecteuclid.org/euclid.facm/1573268424
https://projecteuclid.org/euclid.facm/1573268424
Autor:
Shanta Laishram
Let $\{U_n\}_{n\geq 0}$ be a Lucas sequence. Then the equation $$|U_n|=m_1!m_2!\cdots m_k!$$ with $1
Comment: arXiv admin note: text overlap with arXiv:2006.01756
Comment: arXiv admin note: text overlap with arXiv:2006.01756
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::817ec902303dcfb0ec8a99691ea325ce
Publikováno v:
Journal of Number Theory. 183:388-406
We study the algebraic properties of Generalized Laguerre polynomials for negative integral values of a given parameter which is L n ( − 1 − n − r ) ( x ) = ∑ j = 0 n ( n − j + r n − j ) x j j ! for integers r ≥ 0 , n ≥ 1 . For differ
Publikováno v:
Mathematika. 64:380-386
For the superelliptic curves of the form with , , a prime and for , we show that Here denotes the interval , where is the least prime greater than or equal to . Bennett and Siksek obtained a similar bound for in a recent paper.