Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Shan Tai Chan"'
Autor:
Shan Tai Chan
Publikováno v:
International Mathematics Research Notices. 2022:8209-8250
We study proper holomorphic maps between type-$\textrm {I}$ irreducible bounded symmetric domains. In particular, we obtain rigidity results for such maps under certain assumptions. More precisely, let $f:D^{\textrm {I}}_{p,q}\to D^{\textrm {I}}_{p^{
Autor:
Shan Tai Chan, Yuan Yuan
Publikováno v:
The American Mathematical Monthly. 127:530-536
We show how the determinant of a matrix can be calculated using complex analysis of one variable. We also describe the connection between unitary matrices and the problem of holomorphic isometries ...
Autor:
Shan Tai Chan
Publikováno v:
Proceedings of the American Mathematical Society. 148:173-184
We study proper holomorphic maps between bounded symmetric domains $D$ and $\Omega$. In particular, when $D$ and $\Omega$ are of the same rank $\ge 2$ such that all irreducible factors of $D$ are of rank $\ge 2$, we prove that any proper holomorphic
Autor:
Shan Tai Chan, Yuan Yuan
Publikováno v:
Annales de l'Institut Fourier. 69:2205-2240
Autor:
Ngaiming Mok, Shan Tai Chan
Publikováno v:
Mathematische Zeitschrift. 286:679-700
We study general properties of images of holomorphic isometric embeddings of complex unit balls \({\mathbb {B}}^m\) into irreducible bounded symmetric domains \({\varOmega }\) of rank at least 2. In particular, we show that such holomorphic isometrie
Autor:
Shan Tai Chan
Publikováno v:
Proceedings of the American Mathematical Society. 144:347-358
Autor:
Shan Tai Chan
In this article, we study holomorphic isometric embeddings between bounded symmetric domains. In particular, we show the total geodesy of any holomorphic isometric embedding between reducible bounded symmetric domains with the same rank.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22fb02d5fdcd50a893ef07c488f32c5f
Autor:
Shan Tai Chan
Publikováno v:
Michigan Math. J. 66, iss. 4 (2017), 745-767
We study the classification problem of holomorphic isometric embeddings of the unit disk into polydisks as in [Ng10, Ch16a]. We give a complete classification of all such holomorphic isometries when the target is the $4$ -disk $\Delta^{4}$ . Moreover
Autor:
Shan Tai Chan
We study general properties of holomorphic isometric embeddings of complex unit balls $\mathbb B^n$ into bounded symmetric domains of rank $\ge 2$. In the first part, we study holomorphic isometries from $(\mathbb B^n,kg_{\mathbb B^n})$ to $(\Omega,g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed2a96385979884adb9ca65a3fda7cda
Publikováno v:
International Journal of Mathematics. 28:1740010
We first give an exposition on holomorphic isometries from the Poincaré disk to polydisks and from the Poincaré disk to the product of the Poincaré disk with a complex unit ball. As an application, we provide an example of proper holomorphic map f