Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Shamseddine, Khodr"'
The Levi-Civita field $\mathcal{R}$ is the smallest non-Archimidean ordered field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order. In an earlier paper [Shamseddine-Berz-2003], a measure was d
Externí odkaz:
http://arxiv.org/abs/2211.05051
Autor:
Shamseddine, Khodr
Let $\mathcal{N}$ be a non-Archimedean ordered field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order, and whose Hahn group is Archimedean. In this paper, we first review the properties of wea
Externí odkaz:
http://arxiv.org/abs/2108.12933
Autor:
Flynn, Darren, Shamseddine, Khodr
In this paper, we study the topological structure of the Hahn field whose elements are functions from the additive abelian group of rational numbers to the real numbers field, with well-ordered support. After reviewing the algebraic and order structu
Externí odkaz:
http://arxiv.org/abs/1901.09137
Publikováno v:
P-Adic Numbers, Ultrametric Analysis & Applications; Dec2024, Vol. 16 Issue 4, p303-326, 24p
Autor:
Flynn, Darren, Shamseddine, Khodr
Publikováno v:
In Indagationes Mathematicae September 2019 30(5):773-795
Publikováno v:
p-Adic Numbers, Ultrametric Analysis and Applications. 15:1-22
The Levi-Civita field $\mathcal{R}$ is the smallest non-Archimidean ordered field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order. In an earlier paper [Shamseddine-Berz-2003], a measure was d
Autor:
Shamseddine, Khodr
Publikováno v:
In Applied Mathematics and Computation 15 March 2015 255:44-57
Publikováno v:
In Indagationes Mathematicae January 2015 26(1):191-205
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shamseddine, Khodr
Publikováno v:
In Indagationes Mathematicae 2013 24(1):199-211