Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Shamis, Mira"'
Autor:
Shamis, Mira, Sodin, Sasha
Motivated by the research on upper bounds on the rate of quantum transport for one-dimensional operators, particularly, the recent works of Jitomirskaya--Liu and Jitomirskaya--Powell and the earlier ones of Damanik--Tcheremchantsev, we propose a meth
Externí odkaz:
http://arxiv.org/abs/2111.10902
We show that some spectral properties of the almost Mathieu operator with frequency well approximated by rationals can be as poor as at all possible in the class of all one-dimensional discrete Schroedinger operators. For the class of critical coupli
Externí odkaz:
http://arxiv.org/abs/2110.07974
Autor:
Shamis, Mira, Sodin, Sasha
Publikováno v:
In Journal of Functional Analysis 1 October 2023 285(7)
Autor:
Shamis, Mira
Recently, Hislop and Marx studied the dependence of the integrated density of states on the underlying probability distribution for a class of discrete random Schr\"odinger operators, and established a quantitative form of continuity in weak* topolog
Externí odkaz:
http://arxiv.org/abs/1903.12222
Autor:
Shamis, Mira, Zeitouni, Ofer
Publikováno v:
J. Stat. Physics 172 (2018), 569--591
We study the partition function and free energy of the Curie-Weiss model with complex temperature, and partially describe its phase transitions. As a consequence, we obtain information on the locations of zeros of the partition function.
Comment
Comment
Externí odkaz:
http://arxiv.org/abs/1701.02375
Publikováno v:
Int. Math. Res. Not (2017), rnx145
The Wegner orbital model is a class of random operators introduced by Wegner to model the motion of a quantum particle with many internal degrees of freedom (orbitals) in a disordered medium. We consider the case when the matrix potential is Gaussian
Externí odkaz:
http://arxiv.org/abs/1608.02922
Autor:
Last, Yoram, Shamis, Mira
We study the almost Mathieu operator at critical coupling. We prove that there exists a dense $G_\delta$ set of frequencies for which the spectrum is of zero Hausdorff dimension.
Comment: v1: 24 pp. v2: 25 pp, corrected the statement of Theorem
Comment: v1: 24 pp. v2: 25 pp, corrected the statement of Theorem
Externí odkaz:
http://arxiv.org/abs/1510.07651
Publikováno v:
Comm. Cont. Math. (2017)
The addition of noise has a regularizing effect on Hermitian matrices. This effect is studied here for $H=A+V$, where $A$ is the base matrix and $V$ is sampled from the GOE or the GUE random matrix ensembles. We bound the mean number of eigenvalues o
Externí odkaz:
http://arxiv.org/abs/1509.01799
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shamis, Mira, Spencer, Thomas
We study the Chirikov (standard) map at large coupling $\lambda \gg 1$, and prove that the Lyapounov exponent of the associated Schroedinger operator is of order $\log \lambda$ except for a set of energies of measure $\exp(-c \lambda^\beta)$ for some
Externí odkaz:
http://arxiv.org/abs/1407.6433