Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Shailesh Dhar Diwan"'
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2015 (2015)
We prove strong and Δ-convergence theorems for generalized nonexpansive mappings in uniformly convex hyperbolic spaces using S-iteration process due to Agarwal et al. As uniformly convex hyperbolic spaces contain Banach spaces as well as CAT(0) spac
Externí odkaz:
https://doaj.org/article/7bf7b8bfbaba4e0188f3d9a7d1f27d2b
Autor:
Poonam Mishra, Shailesh Dhar Diwan
Publikováno v:
International Journal of Computer Sciences and Engineering. 7:395-399
Autor:
Poonam Mishra, Shailesh Dhar Diwan
Publikováno v:
Malaya Journal of Matematik. 7:192-205
Autor:
Apurva Kumar Das, Shailesh Dhar Diwan
Publikováno v:
Malaya Journal of Matematik. 7:1-6
Publikováno v:
Malaya Journal of Matematik. :659-668
Autor:
Apurva Kumar Das, Shailesh Dhar Diwan
Publikováno v:
Malaya Journal of Matematik. :807-810
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2015 (2015)
We prove strong and Δ-convergence theorems for generalized nonexpansive mappings in uniformly convex hyperbolic spaces using S-iteration process due to Agarwal et al. As uniformly convex hyperbolic spaces contain Banach spaces as well as CAT(0) spac
Publikováno v:
SpringerPlus
In this paper, we establish the existence of a fixed point for generalized nonexpansive multivalued mappings in hyperbolic spaces and we prove some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepack
Publikováno v:
Fixed Point Theory and Applications. 2015
In this paper, we prove strong convergence theorems for Noor-type iteration schemes involving quasi-nonexpansive multivalued mappings in the framework of $\operatorname{CAT}(0)$ spaces. The results we obtain are generalizations of Panyanak (Nonlinear