Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Shahriar F"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Remote Sensing of Environment April 2015 160:87-98
Autor:
Yashbir Singh, PhD, Shahriar Faghani, MD, John E. Eaton, MD, Sudhakar K. Venkatesh, MD, Bradley J. Erickson, MD, PhD
Publikováno v:
Mayo Clinic Proceedings: Digital Health, Vol 2, Iss 3, Pp 470-476 (2024)
Objective: To investigate a deep learning model for predicting hepatic decompensation using computed tomography (CT) imaging in patients with primary sclerosing cholangitis (PSC). Patients and Methods: Retrospective cohort study involving 277 adult p
Externí odkaz:
https://doaj.org/article/863d2c34ac924f0aa6e885fa03c4cdbc
Autor:
Mana Moassefi, MD, Shahriar Faghani, MD, Sara Khanipour Roshan, MD, Gian Marco Conte, MD, PhD, Seyed Moein Rassoulinejad Mousavi, MD, Timothy J. Kaufmann, MD, Bradley J. Erickson, MD, PhD
Publikováno v:
Mayo Clinic Proceedings: Digital Health, Vol 2, Iss 2, Pp 231-240 (2024)
Objective: To conduct a study comparing the performance of automated segmentation techniques using 2 different contrast-enhanced T1-weighted (CET1) magnetic resonance imaging (MRI) acquisition protocol. Patients and Methods: We collected 100 preopera
Externí odkaz:
https://doaj.org/article/570ebd6fd6bb437cb55f349f08f191a1
Publikováno v:
Energy Reports, Vol 11, Iss , Pp 1019-1052 (2024)
Recent developments in renewable energy-based power systems and smart grids have brought challenges to designing new power conversion systems. On account of the intermittent nature of the renewable sources and unpredictability of the load demand, a c
Externí odkaz:
https://doaj.org/article/788485e48da44700bb14f1f2973b3171
Autor:
Dominic LaBella, Omaditya Khanna, Shan McBurney-Lin, Ryan Mclean, Pierre Nedelec, Arif S. Rashid, Nourel hoda Tahon, Talissa Altes, Ujjwal Baid, Radhika Bhalerao, Yaseen Dhemesh, Scott Floyd, Devon Godfrey, Fathi Hilal, Anastasia Janas, Anahita Kazerooni, Collin Kent, John Kirkpatrick, Florian Kofler, Kevin Leu, Nazanin Maleki, Bjoern Menze, Maxence Pajot, Zachary J. Reitman, Jeffrey D. Rudie, Rachit Saluja, Yury Velichko, Chunhao Wang, Pranav I. Warman, Nico Sollmann, David Diffley, Khanak K. Nandolia, Daniel I Warren, Ali Hussain, John Pascal Fehringer, Yulia Bronstein, Lisa Deptula, Evan G. Stein, Mahsa Taherzadeh, Eduardo Portela de Oliveira, Aoife Haughey, Marinos Kontzialis, Luca Saba, Benjamin Turner, Melanie M. T. Brüßeler, Shehbaz Ansari, Athanasios Gkampenis, David Maximilian Weiss, Aya Mansour, Islam H. Shawali, Nikolay Yordanov, Joel M. Stein, Roula Hourani, Mohammed Yahya Moshebah, Ahmed Magdy Abouelatta, Tanvir Rizvi, Klara Willms, Dann C. Martin, Abdullah Okar, Gennaro D’Anna, Ahmed Taha, Yasaman Sharifi, Shahriar Faghani, Dominic Kite, Marco Pinho, Muhammad Ammar Haider, Michelle Alonso-Basanta, Javier Villanueva-Meyer, Andreas M. Rauschecker, Ayman Nada, Mariam Aboian, Adam Flanders, Spyridon Bakas, Evan Calabrese
Publikováno v:
Scientific Data, Vol 11, Iss 1, Pp 1-8 (2024)
Abstract Meningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment
Externí odkaz:
https://doaj.org/article/a98787bda3824eadba3e679915417559
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shahriar Faghani, MD, D. Chamil Codipilly, MD, Mana Moassefi, MD, Prasad G. Iyer, MD, Bradley J. Erickson, MD, PhD
Publikováno v:
Mayo Clinic Proceedings: Digital Health, Vol 1, Iss 3, Pp 419-424 (2023)
Objective: To efficiently store, transfer, and analyze whole slide imaging (WSI), we developed an image-processing algorithm to remove the unneeded background in a WSI and assemble tissue-containing parts into smaller WSIs without any change in tissu
Externí odkaz:
https://doaj.org/article/1e5f27108a004e289b123388070ccbcf
Autor:
Shahriar Faghani, Rhodes G. Nicholas, Soham Patel, Francis I. Baffour, Mana Moassefi, Pouria Rouzrokh, Bardia Khosravi, Garret M. Powell, Shuai Leng, Katrina N. Glazebrook, Bradley J. Erickson, Christin A. Tiegs-Heiden
Publikováno v:
Research in Diagnostic and Interventional Imaging, Vol 9, Iss , Pp 100044- (2024)
Background: Dual-energy CT (DECT) is a non-invasive way to determine the presence of monosodium urate (MSU) crystals in the workup of gout. Color-coding distinguishes MSU from calcium following material decomposition and post-processing. Most softwar
Externí odkaz:
https://doaj.org/article/0cb6cdc5dcba4d3da14462de6f09bdbb