Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Shahina, K"'
Autor:
Malik, Hashmat Shadab, Kunhimon, Shahina K, Naseer, Muzammal, Khan, Salman, Khan, Fahad Shahbaz
Transferable adversarial attacks optimize adversaries from a pretrained surrogate model and known label space to fool the unknown black-box models. Therefore, these attacks are restricted by the availability of an effective surrogate model. In this w
Externí odkaz:
http://arxiv.org/abs/2207.08803
Autor:
Biji, C.L., Dagala, Anup Kumar, Sinha, Manglam Goutam, Priyanka, N.D., Dhanasekaran, Gayathri, Suresh, Sruthi, Shahina, K., Nair, Achuthsankar S., Sabu, K.K., Anith, K.N.
Publikováno v:
In Physiological and Molecular Plant Pathology September 2024 133
Publikováno v:
In South African Journal of Botany May 2024 168:130-150
Publikováno v:
Biochemical Genetics; Oct2024, Vol. 62 Issue 5, p4157-4173, 17p
Autor:
Shahina, K. T., Madhu, Sandeep K., Ravindran, V., Kumar, Sreekanth S., Krishnan, Abcish, Balan, Babin C.
Publikováno v:
Journal of Maxillofacial & Oral Surgery; Jun2024, Vol. 23 Issue 3, p706-709, 4p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shahina K M
Publikováno v:
International Journal of Computer Trends and Technology. 67:60-62
Publikováno v:
International Journal of Current Advanced Research. 6:3763-3767
Autor:
V. Vaidehi, Shahina K
Publikováno v:
2018 International Conference on Recent Trends in Advance Computing (ICRTAC).
Wireless Sensor Networks (WSN) are resource constrained. Clustering and data aggregations are used to reduce the energy consumption in the network by decreasing the amount of data transmission. Machine Learning algorithms such as swarm intelligence,
Autor:
Habiba Alsafar, Luhaib Jalal Abood, Ahmed A.K. Hassoun, Naushad Rais, Sarika S Pillai, Shahina K. Usman, Amrita Singh Chandhoke
Publikováno v:
International Journal of Genetics and Molecular Biology. 5:20-27
Polymorphism in Renin-Angiotensin-Aldosterone System (RAAS) genes have been studied extensively in various ethnic groups and largely with inconsistent findings on relationship with the risk of developing type 2 diabetes mellitus (T2DM). In this study