Zobrazeno 1 - 10
of 144
pro vyhledávání: '"Shahbazi, C. S."'
Autor:
Gil-García, Alejandro, Shahbazi, C. S.
We obtain a correspondence between irreducible real parallel spinors on pseudo-Riemannian manifolds $(M,g)$ of signature $(4,3)$ and solutions of an associated differential system for three-forms that satisfy a homogeneous algebraic equation of order
Externí odkaz:
http://arxiv.org/abs/2409.08553
Autor:
Lazaroiu, Calin Iuliu, Shahbazi, C. S.
We characterize the set of all conformal Spin(7) forms on an oriented and spin Riemannian eight-manifold $(M,g)$ as solutions to a homogeneous algebraic equation of degree two for the self-dual four-forms of $(M,g)$. When $M$ is compact, we use this
Externí odkaz:
http://arxiv.org/abs/2409.08274
Autor:
Shahbazi, C. S.
We develop the theory of spinorial polyforms associated with bundles of irreducible Clifford modules of non-simple real type, obtaining a precise characterization of the square of an irreducible real spinor in signature $(p-q) = 1\,\mathrm{mod(8)}$ a
Externí odkaz:
http://arxiv.org/abs/2405.03756
We study the deformation theory of the Einstein-Yang-Mills system on a principal bundle with a compact structure group over a compact manifold. We first construct, as an application of the general slice theorem of Diez and Rudolph, a smooth slice in
Externí odkaz:
http://arxiv.org/abs/2311.07572
Publikováno v:
J. Geom. Anal. 34, 122 (2024)
We introduce a novel curvature flow, the Heterotic-Ricci flow, as the two-loop renormalization group flow of the Heterotic string common sector and study its three-dimensional compact solitons. The Heterotic-Ricci flow is a coupled curvature evolutio
Externí odkaz:
http://arxiv.org/abs/2305.11069
Autor:
Bunk, Severin, Shahbazi, C. S.
We study smooth higher symmetry groups and moduli $\infty$-stacks of generic higher geometric structures on manifolds. Symmetries are automorphisms which cover non-trivial diffeomorphisms of the base manifold. We construct the smooth higher symmetry
Externí odkaz:
http://arxiv.org/abs/2304.06633
Autor:
Murcia, Ángel, Shahbazi, C. S.
We investigate the differential geometry and topology of four-dimensional Lorentzian manifolds $(M,g)$ equipped with a real Killing spinor $\varepsilon$, where $\varepsilon$ is defined as a section of a bundle of irreducible real Clifford modules sat
Externí odkaz:
http://arxiv.org/abs/2209.04396
Autor:
Murcia, Ángel, Shahbazi, C. S.
The three-dimensional parallel spinor flow is the evolution flow defined by a parallel spinor on a globally hyperbolic Lorentzian four-manifold. We prove that, despite the fact that Lorentzian metrics admitting parallel spinors are not necessarily Ri
Externí odkaz:
http://arxiv.org/abs/2109.13906
Publikováno v:
New York Journal of Mathematics, Volume 28 (2022) 1463 - 1497
We investigate four-dimensional Heterotic solitons, defined as a particular class of solutions of the equations of motion of Heterotic supergravity on a four-manifold $M$. Heterotic solitons depend on a parameter $\kappa$ and consist of a Riemannian
Externí odkaz:
http://arxiv.org/abs/2101.10309
Autor:
Lazaroiu, C. I., Shahbazi, C. S.
Publikováno v:
Letters in Mathematical Physics 113, 4 (2023)
We implement the Dirac-Schwinger-Zwanziger integrality condition on four-dimensional classical ungauged supergravity and use it to obtain its duality-covariant, gauge-theoretic, differential-geometric model on an oriented four-manifold $M$ of arbitra
Externí odkaz:
http://arxiv.org/abs/2101.07778