Zobrazeno 1 - 10
of 124
pro vyhledávání: '"Shafikov, Rasul"'
Autor:
Boudreaux, Blake J., Shafikov, Rasul
We consider generalizations of rational convexity to Stein manifolds and prove related results
Externí odkaz:
http://arxiv.org/abs/2310.07066
The following generalization of a result of S. Nemirovski is proved: if $X$ is either a projective or a Stein manifold and $K\subset X$ is a compact sublevel set of a strictly plurisubharmonic function $\varphi$ defined in a neighborhood of $K$, then
Externí odkaz:
http://arxiv.org/abs/2310.02132
Autor:
Boudreaux, Blake J., Shafikov, Rasul
Under a mild technical assumption, we prove a necessary and sufficient condition for a totally real compacdt set in $\mathbb{C}^n$ to be rationally convex. This generalizes a classical result of Duval-Sibony
Externí odkaz:
http://arxiv.org/abs/2206.09828
Autor:
Gupta, Purvi, Shafikov, Rasul
It is shown that any smooth closed orientable manifold of dimension $2k + 1$, $k \geq 2$, admits a smooth polynomially convex embedding into $\mathbb C^{3k}$. This improves by $1$ the previously known lower bound of $3k+1$ on the possible ambient com
Externí odkaz:
http://arxiv.org/abs/2009.12526
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shafikov, Rasul, Sukhov, Alexandre
We discuss local polynomial convexity of real analytic Levi-flat hypersurfaces in $\mathbb C^n$, $n>1$, near singular points.
Comment: 12 pages
Comment: 12 pages
Externí odkaz:
http://arxiv.org/abs/1912.01040
Autor:
Broemeling, Luke, Shafikov, Rasul
Rationally convex topological embeddings of compact surfaces (closed or with boundary) into $\mathbb{C}^2$ are constructed.
Comment: 5 pages, 1 figure, related to arXiv:1504.02083, withdrawn due to a gap in the proof
Comment: 5 pages, 1 figure, related to arXiv:1504.02083, withdrawn due to a gap in the proof
Externí odkaz:
http://arxiv.org/abs/1811.01423
Autor:
Gupta, Purvi, Shafikov, Rasul
The totally-real embeddability of any $2k$-dimensional compact manifold $M$ into $\mathbb C^n$, $n\geq 3k$, has several consequences: the genericity of polynomially convex embeddings of $M$ into $\mathbb C^n$, the existence of $n$ smooth generators f
Externí odkaz:
http://arxiv.org/abs/1709.00059
Autor:
Nemirovski, Stefan, Shafikov, Rasul
Publikováno v:
Can. Math. Bull. 61 (2018) 637-639
It is shown that the unit ball in ${\mathbb C}^n$ is the only complex manifold that can universally cover both Stein and non-Stein strictly pseudoconvex domains.
Comment: 3 pages, 1 figure
Comment: 3 pages, 1 figure
Externí odkaz:
http://arxiv.org/abs/1705.05113
This expository paper is concerned with the properties of proper holomorphic mappings between domains in complex affine spaces. We discuss some of the main geometric methods of this theory, such as the Reflection Principle, the scaling method, and th
Externí odkaz:
http://arxiv.org/abs/1703.07243