Zobrazeno 1 - 10
of 1 359
pro vyhledávání: '"Shafiee M."'
Autor:
LEGEND Collaboration, Abgrall, N., Abt, I., Agostini, M., Alexander, A., Andreoiu, C., Araujo, G. R., Avignone III, F. T., Bae, W., Bakalyarov, A., Balata, M., Bantel, M., Barabanov, I., Barabash, A. S., Barbeau, P. S., Barton, C. J., Barton, P. J., Baudis, L., Bauer, C., Bernieri, E., Bezrukov, L., Bhimani, K. H., Biancacci, V., Blalock, E., Bolozdynya, A., Borden, S., Bos, B., Bossio, E., Boston, A., Bothe, V., Bouabid, R., Boyd, S., Brugnera, R., Burlac, N., Busch, M., Caldwell, A., Caldwell, T. S., Carney, R., Cattadori, C., Chan, Y. -D., Chernogorov, A., Christofferson, C. D., Chu, P. -H., Clark, M., Cohen, T., Combs, D., Comellato, T., Cooper, R. J., Costa, I. A., D'Andrea, V., Detwiler, J. A., Di Giacinto, A., Di Marco, N., Dobson, J., Drobizhev, A., Durand, M. R., Edzards, F., Efremenko, Yu., Elliott, S. R., Engelhardt, A., Fajt, L., Faud, N., Febbraro, M. T., Ferella, F., Fields, D. E., Fischer, F., Fomina, M., Fox, H., Franchi, J., Gala, R., Galindo-Uribarri, A., Gangapshev, A., Garfagnini, A., Geraci, A., Gilbert, C., Gold, M., Gooch, C., Gradwohl, K. P., Green, M. P., Grinyer, G. F., Grobov, A., Gruszko, J., Guinn, I., Guiseppe, V. E., Gurentsov, V., Gurov, Y., Gusev, K., Hacket, B., Hagemann, F., Hakenmüeller, J., Haranczyk, M., Hauertmann, L., Haufe, C. R., Hayward, C., Heffron, B., Henkes, F., Henning, R., Aguilar, D. Hervas, Hinton, J., Hodak, R., Hoffmann, H., Hofmann, W., Hostiuc, A., Huang, J., Hult, M., Mirza, M. Ibrahim, Jochum, J., Jones, R., Judson, D., Junker, M., Kaizer, J., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kidd, M., Kihm, T., Kilgus, K., Kim, I., Klimenko, A., Knöpfle, K. T., Kochetov, O., Konovalov, S. I., Kontul, I., Kool, K., Kormos, L. L., Kornoukhov, V. N., Korosec, M., Krause, P., Kuzminov, V. V., López-Castaño, J. M., Lang, K., Laubenstein, M., León, E., Lehnert, B., Leonhardt, A., Li, A., Lindner, M., Lippi, I., Liu, X., Liu, J., Loomba, D., Lubashevskiy, A., Lubsandorzhiev, B., Lusardi, N., Müller, Y., Macko, M., Macolino, C., Majorovits, B., Mamedov, F., Maneschg, W., Manzanillas, L., Marshall, G., Martin, R. D., Martin, E. L., Massarczyk, R., Mei, D., Meijer, S. J., Mertens, S., Misiaszek, M., Mondragon, E., Morella, M., Morgan, B., Mroz, T., Muenstermann, D., Nave, C. J., Nemchenok, I., Neuberger, M., Oli, T. K., Gann, G. Orebi, Othman, G., Palušova, V., Panth, R., Papp, L., Paudel, L. S., Pelczar, K., Perez, J. Perez, Pertoldi, L., Pettus, W., Piseri, P., Poon, A. W. P., Povinec, P., Pullia, A., Radford, D. C., Ramachers, Y. A., Ransom, C., Rauscher, L., Redchuk, M., Reine, A. L., Riboldi, S., Rielage, K., Rozov, S., Rukhadze, E., Rumyantseva, N., Runge, J., Ruof, N. W., Saakyan, R., Sailer, S., Salamanna, G., Salamida, F., Salvat, D. J., Sandukovsky, V., Schönert, S., Schültz, A., Schütt, M., Schaper, D. C., Schreiner, J., Schulz, O., Schuster, M., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shafiee, M., Shevchik, E., Shirchenko, M., Shitov, Y., Simgen, H., Simkovic, F., Skorokhvatov, M., Slavickova, M., Smolek, K., Smolnikov, A., Solomon, J. A., Song, G., Starosta, K., Stekl, I., Stommel, M., Stukov, D., Sumathi, R. R., Sweigart, D. A., Szczepaniec, K., Taffarello, L., Tagnani, D., Tayloe, R., Tedeschi, D., Turqueti, M., Varner, R. L., Vasilyev, S., Veresnikova, A., Vetter, K., Vignoli, C., Vogl, C., von Sturm, K., Waters, D., Waters, J. C., Wei, W., Wiesinger, C., Wilkerson, J. F., Willers, M., Wiseman, C., Wojcik, M., Wu, V. H. -S., Xu, W., Yakushev, E., Ye, T., Yu, C. -H., Yumatov, V., Zaretski, N., Zeman, J., Zhitnikov, I., Zinatulina, D., Zschocke, A. -K., Zsigmond, A. J., Zuber, K., Zuzel, G.
We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless $\beta \beta$ Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It c
Externí odkaz:
http://arxiv.org/abs/2107.11462
Publikováno v:
Journal of Water Resources Planning and Management 2018
Recent years have witnessed a rise in the frequency and intensity of cyberattacks targeted at critical infrastructure systems. This study designs a versatile, data-driven cyberattack detection platform for infrastructure systems cybersecurity, with a
Externí odkaz:
http://arxiv.org/abs/1805.12511
In this work, we perform an exploratory study on synthesizing deep neural networks using biological synaptic strength distributions, and the potential influence of different distributions on modelling performance particularly for the scenario associa
Externí odkaz:
http://arxiv.org/abs/1707.00081
Autor:
Khaksar Fasaee, Mohammad Ali, Monghasemi, Shahryar, Nikoo, Mohammad Reza, Shafiee, M. Ehsan, Berglund, Emily Zechman, Bakhtiari, Parnian Hashempour
Publikováno v:
In Journal of Cleaner Production 15 October 2021 319
The approximation of nonlinear kernels via linear feature maps has recently gained interest due to their applications in reducing the training and testing time of kernel-based learning algorithms. Current random projection methods avoid the curse of
Externí odkaz:
http://arxiv.org/abs/1602.01818
In this paper, a novel approach to visual salience detection via Neural Response Divergence (NeRD) is proposed, where synaptic portions of deep neural networks, previously trained for complex object recognition, are leveraged to compute low level cue
Externí odkaz:
http://arxiv.org/abs/1602.01728
Publikováno v:
In Optik January 2021 225
Publikováno v:
ISeCure; Jul2024, Vol. 16 Issue 2, p165-190, 26p
Publikováno v:
In Journal of Ocean Engineering and Science March 2020 5(1):35-40
Publikováno v:
In Sustainable Cities and Society January 2020 52