Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Shabou, Aymen"'
Large Language Models have received significant attention due to their abilities to solve a wide range of complex tasks. However these models memorize a significant proportion of their training data, posing a serious threat when disclosed at inferenc
Externí odkaz:
http://arxiv.org/abs/2409.18858
Document understanding models are increasingly employed by companies to supplant humans in processing sensitive documents, such as invoices, tax notices, or even ID cards. However, the robustness of such models to privacy attacks remains vastly unexp
Externí odkaz:
http://arxiv.org/abs/2406.03182
Adversarial attacks and defenses have gained increasing interest on computer vision systems in recent years, but as of today, most investigations are limited to images. However, many artificial intelligence models actually handle documentary data, wh
Externí odkaz:
http://arxiv.org/abs/2304.12486
Information Extraction from visually rich documents is a challenging task that has gained a lot of attention in recent years due to its importance in several document-control based applications and its widespread commercial value. The majority of the
Externí odkaz:
http://arxiv.org/abs/2304.12484
State-of-the-art extractive question answering models achieve superhuman performances on the SQuAD benchmark. Yet, they are unreasonably heavy and need expensive GPU computing to answer questions in a reasonable time. Thus, they cannot be used for re
Externí odkaz:
http://arxiv.org/abs/2101.02157
In this paper, we introduce MIX : a multi-task deep learning approach to solve Open-Domain Question Answering. First, we design our system as a multi-stage pipeline made of 3 building blocks : a BM25-based Retriever, to reduce the search space; RoBER
Externí odkaz:
http://arxiv.org/abs/2012.09766
We introduce a novel approach for scanned document representation to perform field extraction. It allows the simultaneous encoding of the textual, visual and layout information in a 3-axis tensor used as an input to a segmentation model. We improve t
Externí odkaz:
http://arxiv.org/abs/2010.02358
Autor:
Shabou, Aymen
Les approches markoviennes en imagerie et vision par ordinateur offrent un cadre mathématique élégant pour résoudre certains problèmes complexes. Le plus souvent, la fonction d'énergie globale modélisant le problème demeure difficile à minim
Externí odkaz:
http://pastel.archives-ouvertes.fr/pastel-00565362
http://pastel.archives-ouvertes.fr/docs/00/56/53/62/PDF/shabou_phd_manuscript.pdf
http://pastel.archives-ouvertes.fr/docs/00/56/53/62/PDF/shabou_phd_manuscript.pdf
Publikováno v:
Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle
Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, 2013, 27 (1), pp.39-63. ⟨10.3166/ria.27.39-63⟩
Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, Lavoisier, 2013, 27 (1), pp.39-63. ⟨10.3166/ria.27.39-63⟩
Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, 2013, 27 (1), pp.39-63. ⟨10.3166/ria.27.39-63⟩
Revue des Sciences et Technologies de l'Information-Série RIA : Revue d'Intelligence Artificielle, Lavoisier, 2013, 27 (1), pp.39-63. ⟨10.3166/ria.27.39-63⟩
National audience; Annotating images using a fixed number of concepts is a fundamental task for content based image retrieval and classification. In practice, several modalities (visual, text...) provide information about the content of images. We ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::08e99763c66bd0957b8a1569b7ea4ba6
https://hal.science/hal-00824580
https://hal.science/hal-00824580
Publikováno v:
Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, Tsukuba, Japan, November 11-15, 2012
Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012
Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, Nov 2012, Tsukuba, Japan. pp.1509-1512
Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012
Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, Nov 2012, Tsukuba, Japan. pp.1509-1512
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::4f0599b5cf841a653cd39ce01c346b7f
https://hal.science/hal-00825187
https://hal.science/hal-00825187