Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Sgueglia, Amedeo"'
Autor:
Díaz, Alberto Espuny, Gupta, Pranshu, Cecchelli, Domenico Mergoni, Parczyk, Olaf, Sgueglia, Amedeo
We provide an optimal sufficient condition, relating minimum degree and bandwidth, for a graph to contain a spanning subdivision of the complete bipartite graph $K_{2,\ell}$. This includes the containment of Hamilton paths and cycles, and has applica
Externí odkaz:
http://arxiv.org/abs/2407.05889
We show that a $k$-uniform hypergraph on $n$ vertices has a spanning subgraph homeomorphic to the $(k - 1)$-dimensional sphere provided that $H$ has no isolated vertices and each set of $k - 1$ vertices supported by an edge is contained in at least $
Externí odkaz:
http://arxiv.org/abs/2407.06275
In this paper, we initiate the study of discrepancy questions for spanning subgraphs of $k$-uniform hypergraphs. Our main result is that any $2$-colouring of the edges of a $k$-uniform $n$-vertex hypergraph $G$ with minimum $(k-1)$-degree $\delta(G)
Externí odkaz:
http://arxiv.org/abs/2312.09976
Autor:
Letzter, Shoham, Sgueglia, Amedeo
Let $f^{(r)}(n;s,k)$ be the maximum number of edges in an $n$-vertex $r$-uniform hypergraph not containing a subhypergraph with $k$ edges on at most $s$ vertices. Recently, Delcourt and Postle, building on work of Glock, Joos, Kim, K\"{u}hn, Lichev a
Externí odkaz:
http://arxiv.org/abs/2312.03856
For a given $\delta \in (0,1)$, the randomly perturbed graph model is defined as the union of any $n$-vertex graph $G_0$ with minimum degree $\delta n$ and the binomial random graph $\mathbf{G}(n,p)$ on the same vertex set. Moreover, we say that a gr
Externí odkaz:
http://arxiv.org/abs/2310.18284
Publikováno v:
Combinator. Probab. Comp. 33 (2024) 624-642
We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every $\delta \in (0,1)$ there exists $C = C(\delta) > 0$ such that the following holds. Let $D_0$ be an $n$-vertex dig
Externí odkaz:
http://arxiv.org/abs/2304.09155
Given a collection of hypergraphs $\textbf{H}=(H_1,\ldots,H_m)$ with the same vertex set, an $m$-edge graph $F\subset \cup_{i\in [m]}H_i$ is a transversal if there is a bijection $\phi:E(F)\to [m]$ such that $e\in E(H_{\phi(e)})$ for each $e\in E(F)$
Externí odkaz:
http://arxiv.org/abs/2209.09289
We investigate the appearance of the square of a Hamilton cycle in the model of randomly perturbed graphs, which is, for a given $\alpha \in (0,1)$, the union of any $n$-vertex graph with minimum degree $\alpha n$ and the binomial random graph $G(n,p
Externí odkaz:
http://arxiv.org/abs/2202.05215
We initiate the study of a new variant of the Maker-Breaker positional game, which we call multistage game. Given a hypergraph $\mathcal{H}=(\mathcal{X},\mathcal{F})$ and a bias $b \ge 1$, the $(1:b)$ multistage Maker-Breaker game on $\mathcal{H}$ is
Externí odkaz:
http://arxiv.org/abs/2202.04344
We study the problem of finding pairwise vertex-disjoint copies of the $\ell$-vertex cycle $C_\ell$ in the randomly perturbed graph model, which is the union of a deterministic $n$-vertex graph $G$ and the binomial random graph $G(n,p)$. For $\ell \g
Externí odkaz:
http://arxiv.org/abs/2103.06136