Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Seymour V. Parter"'
Autor:
Sang Dong Kim, Seymour V. Parter
Publikováno v:
SIAM Journal on Numerical Analysis. 41:767-795
In this work we consider the semicirculant preconditioning of elliptic differential operators of the form Lu := - \epsilon \Delta u + au_x + bu_y + cu $$ in two cases: $0 < \epsilon \ll 1$ and $\epsilon \equiv 1$. The paper [Numer. Math., 81 (1998),
Autor:
Seymour V. Parter
Publikováno v:
SIAM Journal on Numerical Analysis. 39:348-362
Autor:
Seymour V. Parter
Publikováno v:
Journal of Scientific Computing. 14:347-355
Autor:
Seymour V. Parter, Sang Dong Kim
Publikováno v:
SIAM Journal on Numerical Analysis. 34:939-958
In 1979 Orszag proposed a finite-difference preconditioning of the Chebyshev collocation discretization of the Poisson equation. In 1984 Haldenwang, Labrosse, Abboudi, and DeVille gave analytic formulae for the eigenvalues of this preconditioned oper
Autor:
Sang Dong Kim, Seymour V. Parter
Publikováno v:
SIAM Journal on Numerical Analysis. 33:2375-2400
In this paper we analyze a preconditioning technique for the solution of Chebyshev spectral collocation equations with Dirichlet boundary conditions. We obtain bounds on the eigenvalues for the Helmholtz equation. These eigenvalue bounds are obtained
Autor:
Seymour V. Parter, Sang Dong Kim
Publikováno v:
Numerische Mathematik. 72:39-72
This work considers the uniformly elliptic operator $A$ defined by $Au := \ -\Delta u + a_1 u_x + a_2 u_y + a_0 u$ in $\Omega$ (the unit square) with boundary conditions: $u \ = \ 0 $ on $\Gamma_0$ and ${{\partial u} \over {\partial \nu }} = \alpha u
Autor:
Seymour V. Parter, Chang-Ock Lee
Publikováno v:
Numerische Mathematik. 71:59-90
Some years ago there was a great interest in the asymptotic (as h → 0) rates of convergence of block iterative methods for elliptic difference equations ([V], [HV], [P1], [PS1], [PS2]). The k x k block iterative methods and the k-line iterative met
Autor:
Ernest E. Rothman, Seymour V. Parter
Publikováno v:
SIAM Journal on Numerical Analysis. 32:333-385
This work deals with the $H^1 $ condition numbers and the distribution of the $\tilde \beta _{N,M} $-singular values of the preconditioned operators $\{ \tilde \beta _{N,M}^{ - 1} W_{N,M} \hat A_{N,M} \} $. $\hat A_{N,M} $ is the matrix representatio
Publikováno v:
SIAM Journal on Numerical Analysis. 30:343-376
This work deals with the behavior - in the L[sub 2] norm - of the condition number and distribution of the L[sub 2] singular values of the preconditioned operators B[sub h][sup [minus]1]A[sub h] and A[sub h]B[sub h][sup [minus]1][sub h], where A[sub
Publikováno v:
SIAM Journal on Scientific and Statistical Computing. 13:259-288
In an earlier work Manteuffel and Parter discussed the role of boundary conditions in obtaining elliptic operators B so that the preconditioned operators $B_h^{ - 1} A_h $ or $A_h B_h^{ - 1} $ have uniformly bounded $L_2 $ condition number. Here A is