Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Severino Horácio da Silva"'
Publikováno v:
Frontiers in Applied Mathematics and Statistics, Vol 8 (2022)
In this work, we adapt the epidemiological SIR model to study the evolution of the dissemination of COVID-19 in Germany and Brazil (nationally, in the State of Paraíba, and in the City of Campina Grande). We prove the well posedness and the continuo
Externí odkaz:
https://doaj.org/article/f6ac33d793174d33a2ba21e35ad9db4e
Autor:
Severino Horácio da Silva
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
não disponível not available
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14cd1cec9632351bb9cab8322d57227c
https://doi.org/10.11606/t.45.2007.tde-20220712-121825
https://doi.org/10.11606/t.45.2007.tde-20220712-121825
Publikováno v:
Applicable Analysis. 100:1889-1904
In this paper, we consider the following nonlocal autonomous evolution equation in a bounded domain Ω in RN: ∂tu(x,t)=−h(x)u(x,t)+g(∫ΩJ(x,y)u(y,t)dy)+f(x,u(x,t)), where h∈W1,∞(Ω), g:R→R and f:RN×R→...
Publikováno v:
International Journal of Differential Equations, Vol 2014 (2014)
We show the normal hyperbolicity property for the equilibria of the evolution equation ∂m(r,t)/∂t=-m(r,t)+g(βJ*m(r,t)+βh), h,β≥0, and using the normal hyperbolicity property we prove the continuity (upper semicontinuity and lower semicontinu
Externí odkaz:
https://doaj.org/article/46f0d52f384d4c20a8c30f16fb6ec795
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a650681a60f8e00a657c5e1598672c4
In this work, we adapt the epidemiological SIR model to study the evolution of the dissemination of COVID-19 in Germany and Brazil (nationally, in the State of Paraiba, and in the City of Campina Grande). We prove the well posedness and the continuou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32c384477f9c8fecd477e96dd3895869
http://arxiv.org/abs/2011.06515
http://arxiv.org/abs/2011.06515
Publikováno v:
Bull. Belg. Math. Soc. Simon Stevin 26, no. 1 (2019), 91-117
In this work we consider the non local evolution problem \[ \begin{cases} \partial_t u(x,t)=-u(x,t)+g(\beta K(f\circ u)(x,t)+\beta h), ~x \in\Omega, ~t\in[0,\infty[;\\ u(x,t)=0, ~x\in\mathbb{R}^N\setminus\Omega, ~t\in[0,\infty[;\\ u(x,0)=u_0(x),~x\in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c7bc4ffe0ba34d1f8948a42d6cb4e8e3
https://projecteuclid.org/euclid.bbms/1553047231
https://projecteuclid.org/euclid.bbms/1553047231
Publikováno v:
Differential Equations and Dynamical Systems. 28:87-105
In this work we consider the nonlocal evolution equation with time-dependent terms which arises in models of phase separation in \(\mathbb {R}^N\) $$\begin{aligned} \partial _t u=- u + g \left( \beta (J*u) +\beta h(t)\right) \end{aligned}$$ under som
Publikováno v:
Topol. Methods Nonlinear Anal. 51, no. 2 (2018), 583-598
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
In this paper we consider the non local evolution equation $$ \frac{\partial u(x,t)}{\partial t} + u(x,t)= \int_{\mathbb{R}^{N}}J(x-y)f(u(y,t))\rho(y)dy+ h(x). %\,\,\, h \geq 0. $$ We show that this equation defines a continuous flow in both the spac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a86c1743580ace2b71abdbd009d28acb
https://projecteuclid.org/euclid.tmna/1527213957
https://projecteuclid.org/euclid.tmna/1527213957