Zobrazeno 1 - 10
of 148
pro vyhledávání: '"Seuret, Stéphane"'
Autor:
Seuret, Stéphane
In this article, we investigate the bivariate multifractal analysis of pairs of Borel probability measures. We prove that, contrarily to what happens in the univariate case, the natural extension of the Legendre spectrum does not yield an upper bound
Externí odkaz:
http://arxiv.org/abs/2411.13959
Autor:
Barral, Julien, Seuret, Stéphane
In this article, starting from a Gibbs capacity, we build a new random capacity by applying two simple operators, the first one introducing some redundancy and the second one performing a random sampling. Depending on the values of the two parameters
Externí odkaz:
http://arxiv.org/abs/2304.11250
Autor:
Daw, Lara, Seuret, Stéphane
The macroscopic Hausdorff dimension Dim H (E) of a set E $\subset$ R d was introduced by Barlow and Taylor to quantify a "fractal at large scales" behavior of unbounded, possibly discrete, sets E. We develop a method based on potential theory in orde
Externí odkaz:
http://arxiv.org/abs/2203.06954
Autor:
Buczolich, Zoltán, Seuret, Stéphane
Given a Radon probability measure $\mu$ supported in $\mathbb{R}^d$, we are interested in those points $x$ around which the measure is concentrated infinitely many times on thin annuli centered at $x$. Depending on the lower and upper dimension of $\
Externí odkaz:
http://arxiv.org/abs/2111.09379
Autor:
Saes, Guillaume, Seuret, Stéphane
In this paper, we determine the almost sure multifractal spectrum of a class of random functions constructed as sums of pulses with random dilations and translations. In addition, the continuity modulii of these functions is investigated.
Externí odkaz:
http://arxiv.org/abs/2011.10314
Autor:
Barral, Julien, Seuret, Stéphane
In this article, a solution to the so-called Frisch-Parisi conjecture is brought. This achievement is based on three ingredients developed in this paper. First almost-doubling fully supported Radon measures on $\R^d$ with a prescribed singularity spe
Externí odkaz:
http://arxiv.org/abs/2007.00971
Autor:
Seuret, Stephane
Multifractal behavior has been identified and mathematically established for large classes of functions, stochastic processes and measures. Multifractality has also been observed on many data coming from Geophysics, turbulence, Physics, Biology, to n
Externí odkaz:
http://arxiv.org/abs/2001.11834
Autor:
Barral, Julien, Seuret, Stéphane
Publikováno v:
In Journal de mathématiques pures et appliquées July 2023 175:281-329
Autor:
Barral, Julien, Seuret, Stéphane
Publikováno v:
In Journal de mathématiques pures et appliquées July 2023 175:76-108
Autor:
Daw, Lara, Seuret, Stéphane
Publikováno v:
In Advances in Mathematics 15 March 2023 417