Zobrazeno 1 - 10
of 3 464
pro vyhledávání: '"Settore MAT/05"'
Autor:
Vianello, Giacomo
Let A be an Euclidean open Lipschitz set. This dissertation aims to discuss some results concerning the boundary regularity for almost-minimizers of the relative perimeter in A. An almost-minimizer of the relative perimeter in A is a measurable set E
Externí odkaz:
https://hdl.handle.net/11572/417050
We prove a general result on irregularities of distribution for Borel sets intersected with bounded measurable sets or affine half-spaces.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb381f2c738418e0675b2afb7c59c392
https://hdl.handle.net/10446/233010
https://hdl.handle.net/10446/233010
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 171:102-121
In this paper we prove new rigidity results for complete, possibly non-compact, critical metrics of the quadratic curvature functionals $\mathfrak{F}^{2}_t = \int |\operatorname{Ric}_g|^{2} dV_g + t \int R^{2}_g dV_g$, $t\in\mathbb{R}$, and $\mathfra
Autor:
Colturato, Michele, Degiovanni, Marco
Publikováno v:
Rendiconti Lincei - Matematica e Applicazioni. 33:581-609
Autor:
Riccardo Molle, Andrea Sardilli
Publikováno v:
Proceedings of the Edinburgh Mathematical Society. 65:1133-1146
We prove the existence of a ground state positive solution of Schrödinger–Poisson systems in the plane of the form \[ -\Delta u + V(x)u + \frac{\gamma}{2\pi} \left(\log|\cdot| \ast u^2 \right)u = b |u|^{p-2}u \quad\text{in}\ \mathbb{R}^2, \]where
Autor:
Rosario Corso
Publikováno v:
Archiv der Mathematik. 120:59-67
In 1970, McIntosh introduced the so-called 0-closed sesquilinear forms and proved a corresponding representation theorem. In this paper, we give a simple equivalent formulation of 0-closed sesquilinear forms. The main underlying idea is to consider m
Autor:
Francesco Fidaleo, Elia Vincenzi
Publikováno v:
Stochastics. :1-11
The subspace generated by the eigenvectors pertaining to the peripheral spectrum of any stochastic matrix is naturally equipped with a structure of a (finite dimensional abelian) $C^*$-algebra, and the restriction of such a stochastic matrix to this
Publikováno v:
Journal of Differential Equations. 333:302-331
We study the existence of positive solutions with prescribed $L^2$-norm for the Schr\"odinger equation \[ -\Delta u-V(x)u+\lambda u=|u|^{p-2}u\qquad\lambda\in \mathbb{R},\quad u\in H^1(\mathbb{R}^N), \] where $V\ge 0$, $N\ge 1$ and $p\in\left(2+\frac
Publikováno v:
Communications in Mathematical Physics. 395:331-363
We consider the algebras generated by observables in quantum field theory localized in regions in the null plane. For a scalar free field theory, we show that the one-particle structure can be decomposed into a continuous direct integral of lightlike
Autor:
Valeria Marraffa, Bianca Satco
The aim of this paper is to provide a Filippov-Wa\.{z}ewski Relaxation Theorem for the very general setting of Stieltjes differential inclusions. New relaxation results can be deduced for generalized differential problems, for impulsive differential
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3658::ae8f94fb48eca7e1bdadf086ad9b9308
https://hdl.handle.net/10447/597173
https://hdl.handle.net/10447/597173