Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Settino, Marzia"'
Autor:
Settino, Marzia, Cannataro, Mario
Publikováno v:
In Informatics in Medicine Unlocked 2023 39
Autor:
Settino, Marzia, Arbitrio, Mariamena, Scionti, Francesca, Caracciolo, Daniele, Agapito, Giuseppe, Tassone, Pierfrancesco, Tagliaferri, Pierosandro, Di Martino, Maria Teresa, Cannataro, Mario *
Publikováno v:
In Journal of Computational Science April 2021 51
Autor:
Settino, Marzia, Cannataro, Mario
Publikováno v:
In Informatics in Medicine Unlocked 2024 45
Autor:
Settino, Marzia1 (AUTHOR), Cannataro, Mario1 (AUTHOR) cannataro@unicz.it
Publikováno v:
Briefings in Bioinformatics. Sep2021, Vol. 22 Issue 5, p1-12. 12p.
Publikováno v:
International Journal of Environmental Research & Public Health; Apr2023, Vol. 20 Issue 8, p5520, 21p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Settino, Marzia, Arbitrio, Mariamena, Scionti, Francesca, Caracciolo, Daniele, Di Martino, Maria Teresa, Tagliaferri, Pierosandro, Tassone, Pierfrancesco, Cannataro, Mario
Publikováno v:
Lecture notes in computer science 12139 LNCS (2020): 564–571. doi:10.1007/978-3-030-50420-5_42
info:cnr-pdr/source/autori:Settino Marzia.; Arbitrio Mariamena; Scionti Francesca; Caracciolo Daniele; Di Martino Maria Teresa; Tagliaferri Pierosandro; Tassone Pierfrancesco; Cannataro Mario./titolo:Mmrf-commpass data integration and analysis for identifying prognostic markers/doi:10.1007%2F978-3-030-50420-5_42/rivista:Lecture notes in computer science/anno:2020/pagina_da:564/pagina_a:571/intervallo_pagine:564–571/volume:12139 LNCS
Computational Science – ICCS 2020
info:cnr-pdr/source/autori:Settino Marzia.; Arbitrio Mariamena; Scionti Francesca; Caracciolo Daniele; Di Martino Maria Teresa; Tagliaferri Pierosandro; Tassone Pierfrancesco; Cannataro Mario./titolo:Mmrf-commpass data integration and analysis for identifying prognostic markers/doi:10.1007%2F978-3-030-50420-5_42/rivista:Lecture notes in computer science/anno:2020/pagina_da:564/pagina_a:571/intervallo_pagine:564–571/volume:12139 LNCS
Computational Science – ICCS 2020
Multiple Myeloma (MM) is the second most frequent haematological malignancy in the world although the related pathogenesis remains unclear. The study of how gene expression profiling (GEP) is correlated with patients’ survival could be important fo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=pmc_dedup___::b83e78dfe2c21540f7bf35b503c75e7b
https://publications.cnr.it/doc/425372
https://publications.cnr.it/doc/425372
Autor:
Agapito Giuseppe, Settino Marzia, Scionti Francesca, Altomare Emanuela, Guzzi Pietro Hiram, Tassone Pierfrancesco, Tagliaferri Pierosandro, Cannataro Mario, Arbitrio Mariamena, Di Martino Maria Teresa
Publikováno v:
High-throughput Online 9 (2020). doi:10.3390/ht9020008.
info:cnr-pdr/source/autori:Agapito Giuseppe; Settino Marzia; Scionti Francesca; Altomare Emanuela; Guzzi Pietro Hiram; Tassone Pierfrancesco; Tagliaferri Pierosandro; Cannataro Mario; Arbitrio Mariamena; Di Martino Maria Teresa;/titolo:DMET(TM) Genotyping: Tools for Biomarkers Discovery in the Era of Precision Medicine/doi:10.3390%2Fht9020008./rivista:High-throughput Online/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:9
info:cnr-pdr/source/autori:Agapito Giuseppe; Settino Marzia; Scionti Francesca; Altomare Emanuela; Guzzi Pietro Hiram; Tassone Pierfrancesco; Tagliaferri Pierosandro; Cannataro Mario; Arbitrio Mariamena; Di Martino Maria Teresa;/titolo:DMET(TM) Genotyping: Tools for Biomarkers Discovery in the Era of Precision Medicine/doi:10.3390%2Fht9020008./rivista:High-throughput Online/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:9
The knowledge of genetic variants in genes involved in drug metabolism may be translated into reduction of adverse drug reactions, increase of efficacy, healthcare outcomes improvement and economic benefits. Many high-throughput tools are available f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=cnr_________::d42656ee8ea280391e0e56516b43ef66
http://www.cnr.it/prodotto/i/420476
http://www.cnr.it/prodotto/i/420476
Publikováno v:
In Acta Astronautica 2006 59(6):499-502
Autor:
Settino Marzia, Bernasconi A, Ceddia G, Agapito Giuseppe, Arbitrio Maraimena, Scionti Francesca, Di Martino Maria eresa, Tassone Pierfrancesco, Tagliaferri Pierosandro, Masseroli M, Cannataro Mario
Publikováno v:
1st International and 32nd Annual Conference of Italian Association of Cell Cultures (AICC): From Single Gene Analysis to Single Cell Profiling: A New Era for Genomic Medicine, Catanzaro, Italy, October 1st-2nd, 2019
info:cnr-pdr/source/autori:Settino Marzia; Bernasconi A; Ceddia G; Agapito Giuseppe; Arbitrio Maraimena; Scionti Francesca; Di Martino Maria eresa; Tassone Pierfrancesco; Tagliaferri Pierosandro; Masseroli M; Cannataro Mario;/congresso_nome:1st International and 32nd Annual Conference of Italian Association of Cell Cultures (AICC): From Single Gene Analysis to Single Cell Profiling: A New Era for Genomic Medicine/congresso_luogo:Catanzaro, Italy/congresso_data:October 1st-2nd, 2019/anno:2019/pagina_da:/pagina_a:/intervallo_pagine
info:cnr-pdr/source/autori:Settino Marzia; Bernasconi A; Ceddia G; Agapito Giuseppe; Arbitrio Maraimena; Scionti Francesca; Di Martino Maria eresa; Tassone Pierfrancesco; Tagliaferri Pierosandro; Masseroli M; Cannataro Mario;/congresso_nome:1st International and 32nd Annual Conference of Italian Association of Cell Cultures (AICC): From Single Gene Analysis to Single Cell Profiling: A New Era for Genomic Medicine/congresso_luogo:Catanzaro, Italy/congresso_data:October 1st-2nd, 2019/anno:2019/pagina_da:/pagina_a:/intervallo_pagine
Integrative analyses using data from Public Genomic Datasets allowed GWAS investigation of the genetic variants function providing more insight than single-platform approaches. There exists a large volume of literature in the area of integrative geno
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=cnr_________::1b101dd2d8a84f057af48f727e1edcf1
https://publications.cnr.it/doc/412154
https://publications.cnr.it/doc/412154