Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Settepanella, Simona"'
Autor:
Settepanella, Simona, Yamagata, So
Publikováno v:
Comptes Rendus. Mathématique, Vol 360, Iss G9, Pp 1027-1038 (2022)
In 1985 Crapo introduced in [3] a new mathematical object that he called geometry of circuits. Four years later, in 1989, Manin and Schechtman defined in [13] the same object and called it discriminantal arrangement, the name by which it is known now
Externí odkaz:
https://doaj.org/article/2d1e5b708d864938aecc0479c3648087
Autor:
Settepanella, Simona, Yamagata, So
The discriminantal arrangement is the space of configurations of $n$ hyperplanes in generic position in a $k$ dimensional space (see \cite{MS}). Differently from the case $k=1$ in which it corresponds to the well known braid arrangement, the discrimi
Externí odkaz:
http://arxiv.org/abs/2205.04664
Autor:
Saito, Takuya, Settepanella, Simona
The discriminantal arrangement $\mathcal{B}(n,k,\mathcal{A})$ has been introduced by Manin and Schectman in 1989 and it consists of all non-generic translates of a generic arrangement $\mathcal{A}$ of n hyperplanes in a $k$-dimensional space. It is k
Externí odkaz:
http://arxiv.org/abs/2202.04794
Publikováno v:
Innov. Incidence Geom. 21 (2024) 117-130
In 1989 Manin and Schechtman defined the discriminantal arrangement $\mathcal{B}(n, k,\mathcal{A})$ associated to a generic arrangement $\mathcal{A}$ of $n$ hyperplanes in a $k$-dimensional space. An equivalent notion was already introduced by Crapo
Externí odkaz:
http://arxiv.org/abs/2201.03007
Autor:
Settepanella, Simona, Yamagata, So
In 1985 Crapo introduced in \cite{Crapo} a new mathematical object that he called $\textit{geometry of circuits}$. Four years later, in 1989, Manin and Schechtman defined in \cite{MS} the same object and called it $\textit{discriminantal arrangement}
Externí odkaz:
http://arxiv.org/abs/2101.00544
Autor:
Bailet, Pauline, Settepanella, Simona
Publikováno v:
Advances in Applied Mathematics, 20 (2017) 46-85
We study the first homology group of the Milnor fiber of sharp arrangements in the real projective plane. Our work relies on the minimal Salvetti complex of the deconing arrangement and its boundary map. We describe an algorithm which computes possib
Externí odkaz:
http://arxiv.org/abs/1606.03564
In this paper we give a very natural description of the bijections between the minimal CW-complex homotopy equivalent to the complement of a supersolvable arrangement $\mathcal{A}$, the $\textbf{nbc}$ basis of the Orlik-Solomon algebra associated to
Externí odkaz:
http://arxiv.org/abs/1503.05721
We describe the fundamental group and second homotopy group of ordered $k-$point sets in $Gr(k,n)$ generating a subspace of fixed dimension.
Comment: 10 pages
Comment: 10 pages
Externí odkaz:
http://arxiv.org/abs/1311.5643
Let $\mathcal{F}_h^i(k,n)$ be the $i$th ordered configuration space of all distinct points $H_1,\ldots,H_h$ in the Grassmannian $Gr(k,n)$ of $k$-dimensional subspaces of $\mc^n$, whose sum is a subspace of dimension $i$. We prove that $\mathcal{F}_h^
Externí odkaz:
http://arxiv.org/abs/1311.5642
We describe the fundamental groups of ordered and unordered $k-$point sets in the n-dimensional complex space $C^n$ generating an affine subspace of fixed dimension.
Externí odkaz:
http://arxiv.org/abs/1209.2839