Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Seshadev Padhi"'
Publikováno v:
Cubo, Vol 26, Iss 2, Pp 259-277 (2024)
In this paper the authors present three different Lyapunov-type inequalities for a higher-order Caputo fractional differential equation with identical boundary conditions marking the inaugural instance of such an approach in the existing literature.
Externí odkaz:
https://doaj.org/article/81179beb941e48fc933b46ffa6719aed
Autor:
Seshadev Padhi, John R. Graef
Publikováno v:
Mathematica Bohemica, Vol 148, Iss 4, Pp 583-601 (2023)
We study the existence of positive solutions to the fourth-order two-point boundary value problem \begin{cases} u^{\prime\prime\prime\prime}(t) + f(t,u(t))=0, & 0 < t < 1, u^{\prime}(0) = u^\prime(1) = u^{\prime\prime}(0) =0, & u(0) = \alpha[u], \en
Externí odkaz:
https://doaj.org/article/1fb756b1a9434c58962af49465f59a91
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2023, Iss 29, Pp 1-12 (2023)
In this article we use coincidence degree theory to study the existence of a positive periodic solutions to the following bioeconomic model in fishery dynamics \begin{equation*}\label{eq1.3} \begin{cases} \frac{dn}{dt} = n \left(r(t) \left(1-\frac
Externí odkaz:
https://doaj.org/article/0c675b89e24244499c85185119505516
Autor:
Martin Bohner, Alexander Domoshnitsky, Elena Litsyn, Seshadev Padhi, Satyam Narayan Srivastava
Publikováno v:
Applied Mathematics in Science and Engineering, Vol 31, Iss 1 (2023)
We propose necessary and sufficient conditions for the negativity of the two-point boundary value problem in the form of the Vallée-Poussin theorem about differential inequalities for the Hadamard fractional functional differential problem \[ \begin
Externí odkaz:
https://doaj.org/article/4d0854e49600479292b4132c38687f29
Autor:
Seshadev Padhi, Julio G. Dix
Publikováno v:
Electronic Journal of Differential Equations, Vol Special Issues, Iss 02, Pp 231-238 (2023)
Externí odkaz:
https://doaj.org/article/3761f59b2c114d67a89029fd6d45e004
Publikováno v:
Opuscula Mathematica, Vol 36, Iss 1, Pp 69-79 (2016)
We consider the existence of at least three positive solutions of a nonlinear first order problem with a nonlinear nonlocal boundary condition given by \[\begin{aligned} x^{\prime}(t)& = r(t)x(t) + \sum_{i=1}^{m} f_i(t,x(t)), \quad t \in [0,1],\\ \la
Externí odkaz:
https://doaj.org/article/6c8e31705ae0403f8246d22af2ecf8c9
Autor:
Seshadev Padhi, Chuanxi Qian
Publikováno v:
Electronic Journal of Differential Equations, Vol 2007, Iss 22, Pp 1-10 (2007)
We establish sufficient conditions for the linear differential equations of fourth order $$ (r(t)y'''(t))' =a(t)y(t)+b(t)y'(t)+c(t)y''(t)+f(t) $$ so that all oscillatory solutions of the equation satisfy $$ lim_{toinfty}y(t)=lim_{toinfty}y'(t)=lim_{t
Externí odkaz:
https://doaj.org/article/c4eb0720fd624e268a07ca0ed9af480b
Autor:
Seshadev Padhi
Publikováno v:
Electronic Journal of Differential Equations, Vol 2005, Iss 65, Pp 1-13 (2005)
We establish conditions for the linear differential equation $$ y^{(n)}(t)+p(t)y(g(t))=0 $$ to have property A. Explicit sufficient conditions for the oscillation of the the equation is obtained while dealing with the property A of the equations. A c
Externí odkaz:
https://doaj.org/article/52dc2cb949994ceb84db7914f96273f4
Publikováno v:
Archivum Mathematicum. :117-123
Publikováno v:
Fractional Calculus and Applied Analysis. 25:1630-1650