Zobrazeno 1 - 10
of 134
pro vyhledávání: '"Serrano Rodriguez P"'
The real anisotropic Littlewood's $4 / 3$ inequality is an extension of a famous result obtained in 1930 by J. E. Littlewood. It asserts that, for $a , b \in ( 0 , \infty )$, the following conditions are equivalent: $\bullet$ There is an optimal cons
Externí odkaz:
http://arxiv.org/abs/2407.06804
Kwapie\'{n}'s theorem asserts that every continuous linear operator from $\ell_{1}$ to $\ell_{p}$ is absolutely $\left( r,1\right) $-summing for $1/r=1-\left\vert 1/p-1/2\right\vert .$ When $p=2$ it recovers the famous Grothendieck's theorem. In this
Externí odkaz:
http://arxiv.org/abs/2202.04523
The investigation of regularity/summability properties of the coefficients of bilinear forms in sequence spaces was initiated by Littlewood in $1930$. Nowadays, this topic has important connections with other fields of Pure and Applied Mathematics as
Externí odkaz:
http://arxiv.org/abs/2112.12829
The Orlicz $\left( \ell_{2},\ell_{1}\right) $-mixed inequality states that $$ \left( \sum_{j_{1}=1}^{n}\left( \sum_{j_{2}=1}^{n}\left\vert A(e_{j_{1} },e_{j_{2}})\right\vert \right) ^{2}\right) ^{\frac{1}{2}}\leq\sqrt {2}\left\Vert A\right\Vert $$ fo
Externí odkaz:
http://arxiv.org/abs/2007.00037
The Kahane--Salem--Zygmund inequality is a probabilistic result that guarantees the existence of special matrices with entries $1$ and $-1$ generating unimodular $m$-linear forms $A_{m,n}:\ell_{p_{1}}^{n}\times \cdots\times\ell_{p_{m}}^{n}\longrighta
Externí odkaz:
http://arxiv.org/abs/2002.00946
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Lineal and Multilinear Algebra-2018
In this work we provide the best constants of the multiple Khintchine inequality. This allows us, among other results, to obtain the best constants of the mixed $\left( \ell_{\frac{p}{p-1}},\ell_{2}\right) $-Littlewood inequality, thus ending complet
Externí odkaz:
http://arxiv.org/abs/1704.01029
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We prove a nonlinear regularity principle in sequence spaces which produces universal estimates for special series defined therein. Some consequences are obtained and, in particular, we establish new inclusion theorems for multiple summing operators.
Externí odkaz:
http://arxiv.org/abs/1608.03423
Publikováno v:
Linear Algebra and Its Applications-2017
The Hardy--Littlewood inequalities on $\ell _{p}$ spaces provide optimal exponents for some classes of inequalities for bilinear forms on $\ell _{p}$ spaces. In this paper we investigate in detail the exponents involved in Hardy--Littlewood type ineq
Externí odkaz:
http://arxiv.org/abs/1602.00178