Zobrazeno 1 - 10
of 107
pro vyhledávání: '"Sergyeyev, Artur"'
Autor:
Kryński, Wojciech, Sergyeyev, Artur
We introduce an integrable two-component extension of the general heavenly equation and prove that the solutions of this extension are in one-to-one correspondence with 4-dimensional hyper-para-Hermitian metrics. Furthermore, we demonstrate that if t
Externí odkaz:
http://arxiv.org/abs/2402.10317
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Phys. D 411 (2020), 132546, 19 pp
We study the hydrodynamic-type system of differential equations modeling isothermal no-slip drift flux. Using the facts that the system is partially coupled and its subsystem reduces to the (1+1)-dimensional Klein--Gordon equation, we exhaustively de
Externí odkaz:
http://arxiv.org/abs/1908.00034
Publikováno v:
Rep. Math. Phys. 87 (2021), 249-263
Motivated by the theory of Painlev\'e equations and associated hierarchies, we study non-autonomous Hamiltonian systems that are Frobenius integrable. We establish sufficient conditions under which a given finite-dimensional Lie algebra of Hamiltonia
Externí odkaz:
http://arxiv.org/abs/1712.08155
Publikováno v:
Phys. D 402 (2020), 132188
We perform extended group analysis for a system of differential equations modeling an isothermal no-slip drift flux. The maximal Lie invariance algebra of this system is proved to be infinite-dimensional. We also find the complete point symmetry grou
Externí odkaz:
http://arxiv.org/abs/1705.09277
Autor:
Blaszak, Maciej, Sergyeyev, Artur
In the present paper we introduce a multi-dimensional version of the R-matrix approach to the construction of integrable hierarchies. Applying this method to the case of the Lie algebra of functions with respect to the contact bracket, we construct i
Externí odkaz:
http://arxiv.org/abs/1605.07592
Publikováno v:
In Reports on Mathematical Physics April 2021 87(2):249-263
Publikováno v:
In Physica D: Nonlinear Phenomena October 2020 411
Publikováno v:
In Physica D: Nonlinear Phenomena 15 January 2020 402