Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Sergue I. Vinitsky"'
Publikováno v:
Computer Physics Communications. 286:108662
Autor:
Vladimir L. Derbov, Alexander A. Gusev, Sergue I. Vinitsky, Sergey A. Mikheev, Ilya V. Tsvetkov, Viktor P. Tsvetkov
Publikováno v:
Computational Biophysics and Nanobiophotonics.
Autor:
Algirdas Deveikis, Alexander A. Gusev, Sergue I. Vinitsky, Yuri A. Blinkov, Andrzej Góźdź, Aleksandra Pȩdrak, Peter O. Hess
Publikováno v:
Computer Algebra in Scientific Computing ISBN: 9783031147876
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::974aaf37825ed805859f8a2bcbae98b3
https://doi.org/10.1007/978-3-031-14788-3_7
https://doi.org/10.1007/978-3-031-14788-3_7
Autor:
P. M. Krassovitskiy, Alexander Gusev, Feodor M. Pen'kov, Vladimir L. Derbov, Sergue I. Vinitsky, G. Chuluunbaatar
Publikováno v:
Saratov Fall Meeting 2020: Computations and Data Analysis: from Molecular Processes to Brain Functions.
A mathematical model of COVID-19 pandemic based on a two-parameter nonlinear first-order ordinary differential equation with retarded time argument is proposed. The model uses two parameters: the time of possible dissemination of infection by an indi
Autor:
Vladimir L. Derbov, Ochbadrakh Chuluunbaatar, Luong Le Hai, G. Chuluunbaatar, Alexander Gusev, Vladimir P. Gerdt, Sergue I. Vinitsky
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030816971
MC
MC
We present a new algorithm of the finite element method (FEM) implemented as KANTBP 5M code in MAPLE for solving boundary-value problems (BVPs) for systems of second-order ordinary differential equations with continuous or piecewise continuous real o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0bf0f518d9524a81fca5857143fbaecc
https://doi.org/10.1007/978-3-030-81698-8_11
https://doi.org/10.1007/978-3-030-81698-8_11
Autor:
Alexander Gusev, Andrzej Góźdź, George S. Pogosyan, Sergue I. Vinitsky, Aleksandra Pȩdrak, Cestmir Burdik, Algirdas Deveikis
Publikováno v:
Computer Algebra in Scientific Computing ISBN: 9783030851644
CASC
CASC
We have developed symbolic-numeric algorithms implemented in the Wolfram Mathematica to compute the orthonormal canonical Gel’fand–Tseitlin (G-T), non-canonical Bargmann-Moshinsky (B-M) and Elliott (E) bases of irreducible representations \(\text
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b31ca984dbac8f342d8495a59bb3c295
https://doi.org/10.1007/978-3-030-85165-1_7
https://doi.org/10.1007/978-3-030-85165-1_7
Publikováno v:
The European Physical Journal D. 74
An improved adiabatic method is applied to study the highly excited asymmetric two-electron configurations of helium atom known as frozen-planet resonances. It is shown that our approach provides much better agreement with numerically calculated reso
Autor:
Aleksandra Pȩdrak, Alexander Gusev, George S. Pogosyan, Cestmir Burdik, Sergue I. Vinitsky, Algirdas Deveikis, Vladimir P. Gerdt, Andrzej Góźdź
Publikováno v:
Computer Algebra in Scientific Computing ISBN: 9783030600259
We have developed a symbolic-numeric algorithm implemented in Wolfram Mathematica to compute the orthonormal non-canonical bases of symmetric irreducible representations of the \(\text {O(5)}\times \text {SU(1,1)}\) and \(\overline{\text {O(5)}}\time
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ad94d046ed152c1c66f0864a504a0f6f
https://doi.org/10.1007/978-3-030-60026-6_12
https://doi.org/10.1007/978-3-030-60026-6_12
Publikováno v:
Physics of Atomic Nuclei. 81:853-857
We discuss the problem of the time variable in the nearly standard formulation of the quantum mechanics. In order to be able to describe the outcome of some of the experiments, we have used a novel formulation of the time evolution of quantum states
Autor:
Andrzej Góźdź, Sergue I. Vinitsky, Vladimir L. Derbov, Ochbadrakh Chuluunbaatar, P. M. Krassovitskiy, Alexander Gusev
Publikováno v:
Physics of Atomic Nuclei. 81:945-970
We considered collinear models for a trimer of identical atoms with molecular pair interactions and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are formulated as 2D boundary-value problems in the Jacob