Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Sergiy Maksymenko"'
Autor:
Iryna Kuznietsova, Sergiy Maksymenko
Publikováno v:
Pracì Mìžnarodnogo Geometričnogo Centru, Vol 13, Iss 4, Pp 178-208 (2021)
Let $M$ be a connected compact orientable surface, $f:M\to \mathbb{R}$ be a Morse function, and $h:M\to M$ be a diffeomorphism which preserves $f$ in the sense that $f\circ h = f$. We will show that if $h$ leaves invariant each regular component of
Externí odkaz:
https://doaj.org/article/b66c704375b745a69da33ad3899de602
Autor:
Sergiy Maksymenko, Eugene Polulyakh
Publikováno v:
Pracì Mìžnarodnogo Geometričnogo Centru, Vol 8, Iss 3-4, Pp 17-30 (2020)
The paper studies non-compact surfaces obtained by gluing strips R × (−1, 1) with at most countably many boundary intervals along some of these intervals. Every such strip possesses a foliation by parallel lines, which gives a foliation on the res
Externí odkaz:
https://doaj.org/article/d352aaa4988d4fe78bb1b8b814e1ea0f
Publikováno v:
Pracì Mìžnarodnogo Geometričnogo Centru, Vol 14, Iss 3, Pp i-iii (2022)
On May 25-28, 2021 held an International online conference "Algebraic and geometric methods of analysis" dedicated to the memory of an outstanding mathematician, the Corresponding member of National Academy of Sciences of Ukraine Yuriy Yuriyovych Tro
Externí odkaz:
https://doaj.org/article/90c6f697ccb841e8b7253820dcc6ec26
Publikováno v:
Pracì Mìžnarodnogo Geometričnogo Centru, Vol 14, Iss 3, Pp i-iii (2021)
On May 25-28, 2021 held an International online conference "Algebraic and geometric methods of analysis" dedicated to the memory of an outstanding mathematician, the Corresponding member of National Academy of Sciences of Ukraine Yuriy Yuriyovych Tro
Externí odkaz:
https://doaj.org/article/f94b4f3084e14c34ba1818db1c67ad12
Publikováno v:
Pracì Mìžnarodnogo Geometričnogo Centru, Vol 13, Iss 4, Pp i-vi (2020)
This note devoted to Volodymyr Vasylyovych Sharko (25.09.1949-07.10.2014)
Externí odkaz:
https://doaj.org/article/bd1c24ea7c824a89b06318acfba2319c
Autor:
Anna Kravchenko, Sergiy Maksymenko
Publikováno v:
Pracì Mìžnarodnogo Geometričnogo Centru, Vol 11, Iss 4, Pp 72-79 (2018)
Let $M$ be a compact two-dimensional manifold and, $f \in C^{\infty}(M, R)$ be a Morse function, and $\Gamma$ be its Kronrod-Reeb graph. Denote by $O(f)={f o h | h \in D(M)}$ the orbit of $f$ with respect to the natural right action of the group of d
Externí odkaz:
https://doaj.org/article/245079a0281543d486e61a5bdc2bb087
Autor:
Iryna Kuznietsova, Sergiy Maksymenko
Publikováno v:
Pracì Mìžnarodnogo Geometričnogo Centru, Vol 12, Iss 3, Pp 1–29-1–29 (2019)
Let $B$ be a M\"obius band and $f:B \to \mathbb{R}$ be a Morse map taking a constant value on $\partial B$, and $\mathcal{S}(f,\partial B)$ be the group of diffeomorphisms $h$ of $B$ fixed on $\partial B$ and preserving $f$ in the sense that $f\circ
Externí odkaz:
https://doaj.org/article/201d950d870f456199b49cde3245baa4
Autor:
Sergiy Maksymenko, Oleksii Nikitchenko
Publikováno v:
Groups, Invariants, Integrals, and Mathematical Physics ISBN: 9783031256653
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7d6d5898931970898c258ce45b79d496
https://doi.org/10.1007/978-3-031-25666-0_5
https://doi.org/10.1007/978-3-031-25666-0_5
Publikováno v:
Pracì Mìžnarodnogo Geometričnogo Centru, Vol 13, Iss 2, Pp 68-108 (2020)
Let $M, N$ the be smooth manifolds, $\mathcal{C}^{r}(M,N)$ the space of ${C}^{r}$ maps endowed with weak $C^{r}$ Whitney topology, and $\mathcal{B} \subset \mathcal{C}^{r}(M,N)$ an open subset. It is proved that for $0\leq r
Comment: 31 pages, i
Comment: 31 pages, i
Autor:
Eugene Polulyakh, Sergiy Maksymenko
Let $Z$ be a non-compact two-dimensional manifold obtained from a family of open strips $\mathbb{R}\times(0,1)$ with boundary intervals by gluing those strips along some pairs of their boundary intervals. Every such strip has a natural foliation into
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f7ac6adafe54a8e0eb77deb567bc9565
http://arxiv.org/abs/2202.07770
http://arxiv.org/abs/2202.07770