Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Sergiy Kozerenko"'
Autor:
Sergiy Kozerenko
Publikováno v:
Discrete Mathematics Letters, Vol 14, Pp 58-65 (2024)
Externí odkaz:
https://doaj.org/article/8bc1fe752ad74684a68939c26e4c807a
Autor:
Vladyslav Haponenko, Sergiy Kozerenko
Publikováno v:
Discrete Mathematics Letters, Vol 13, Pp 58-65 (2024)
Externí odkaz:
https://doaj.org/article/1eeda2a3f8ac42329d6a3b6f7e8f13bc
Autor:
Sergiy Kozerenko
Publikováno v:
Discrete Mathematics Letters, Vol 12, Pp 29-33 (2023)
Externí odkaz:
https://doaj.org/article/33cf97ab48174b1e8bd47cdcc53c8ae8
Autor:
Sergiy Kozerenko, Andrii Serdiuk
Publikováno v:
Opuscula Mathematica, Vol 43, Iss 1, Pp 81-100 (2022)
An edge imbalance provides a local measure of how irregular a given graph is. In this paper, we study graphs with graphic imbalance sequences. We give a new proof of imbalance graphicness for trees and use the new idea to prove that the same holds fo
Externí odkaz:
https://doaj.org/article/ebed6e009b4f4be48425941ea87360d7
Autor:
Sergiy Kozerenko
Publikováno v:
Opuscula Mathematica, Vol 41, Iss 1, Pp 55-70 (2021)
We consider linear and metric self-maps on vertex sets of finite combinatorial trees. Linear maps are maps which preserve intervals between pairs of vertices whereas metric maps are maps which do not increase distances between pairs of vertices. We o
Externí odkaz:
https://doaj.org/article/3e5b19e4a87844e6801f90aaf4355ceb
Autor:
Sergiy Kozerenko
Publikováno v:
Opuscula Mathematica, Vol 38, Iss 3, Pp 379-393 (2018)
With every self-map on the vertex set of a finite tree one can associate the directed graph of a special type which is called the Markov graph. Expansive and anti-expansive tree maps are two extremal classes of maps with respect to the number of loop
Externí odkaz:
https://doaj.org/article/1f6dcac483074d0999eabfe8e614b90c
Autor:
SERGIY KOZERENKO
Publikováno v:
Romanian Journal of Mathematics and Computer Science, Vol 6, Iss 1, Pp 16-24 (2016)
One feature of the famous Sharkovsky’s theorem is that it can be proved using digraphs of a special type (the so–called Markov graphs). The most general definition assigns a Markov graph to every continuous map from the topological graph to itsel
Externí odkaz:
https://doaj.org/article/12df424ad3ff4c658fb0daf1c3bb89df
Autor:
Sergiy Kozerenko, Andrii Serdiuk
Publikováno v:
Opuscula Mathematica. 43:81-100
An edge imbalance provides a local measure of how irregular a given graph is. In this paper, we study graphs with graphic imbalance sequences. We give a new proof of imbalance graphicness for trees and use the new idea to prove that the same holds fo
In this note, we give answers to three questions from the paper [A. Das, Triameter of graphs, Discuss. Math. Graph Theory, 41 (2021), 601--616]. Namely, we obtain a tight lower bound for the triameter of trees in terms of order and number of leaves.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b97cd9ef944d55c82c721a5051ca19d
Autor:
Sergiy Kozerenko
Publikováno v:
Математички билтен/BULLETIN MATHÉMATIQUE DE LA SOCIÉTÉ DES MATHÉMATICIENS DE LA RÉPUBLIQUE MACÉDOINE. :22-29