Zobrazeno 1 - 10
of 112
pro vyhledávání: '"Sergiu Moroianu"'
Autor:
Thomas Friedrich
Publikováno v:
Jahresbericht der Deutschen Mathematiker-Vereinigung. 118:51-56
Autor:
Krýsl, Svatopluk
Publikováno v:
J. Geom. Symmetry Phys. 42 (2016), 99-103
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=project_eucl::53cbc8019f2e68f1f3b2b520237bc75c
http://projecteuclid.org/euclid.jgsp/1496196026
http://projecteuclid.org/euclid.jgsp/1496196026
Autor:
Sergiu Moroianu
Publikováno v:
European Mathematical Society Magazine. :55-58
Autor:
Brice Flamencourt, Sergiu Moroianu
Let $\mathcal{Z}$ be a spin $4$-manifold carrying a parallel spinor and $M\hookrightarrow \mathcal{Z}$ a hypersurface. The second fundamental form of the embedding induces a flat metric connection on $TM$. Such flat connections satisfy a non-elliptic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43a8f91e092035474b185b0864f97d95
http://arxiv.org/abs/2110.15386
http://arxiv.org/abs/2110.15386
Publikováno v:
ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE. :323-384
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 17:853-912
We study the renormalized volume of asymptotically hyperbolic Einstein (AHE in short) manifolds $(M,g)$ when the conformal boundary $\unicode[STIX]{x2202}M$ has dimension $n$ even. Its definition depends on the choice of metric $h_{0}$ on $\unicode[S
Publikováno v:
Journal of the Institute of Mathematics of Jussieu
Journal of the Institute of Mathematics of Jussieu, Cambridge University Press (CUP), 2018, 17 (4), pp.853--912
Journal of the Institute of Mathematics of Jussieu, 2018, 17 (4), pp.853--912
HAL
Journal de l'institut de mathématiques de Jussieu, 17(4), 853-912. Cambridge, UK: Cambridge University Press (2018).
Journal of the Institute of Mathematics of Jussieu, Cambridge University Press (CUP), 2018, 17 (4), pp.853--912
Journal of the Institute of Mathematics of Jussieu, 2018, 17 (4), pp.853--912
HAL
Journal de l'institut de mathématiques de Jussieu, 17(4), 853-912. Cambridge, UK: Cambridge University Press (2018).
We study the renormalized volume of asymptotically hyperbolic Einstein (AHE in short) manifolds $(M,g)$ when the conformal boundary $\pl M$ has dimension $n$ even. Its definition depends on the choice of metric $h_0$ on $\partial M$ in the conformal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49099c1d17cf7046ba3c73bd95c8b312
https://hal.archives-ouvertes.fr/hal-00806380v2/file/renormvolume220915.pdf
https://hal.archives-ouvertes.fr/hal-00806380v2/file/renormvolume220915.pdf
Autor:
Sergiu Moroianu, Daniel Cibotaru
On any odd-dimensional oriented Riemannian manifold we define a volume form, which we call the odd Pfaffian, through a certain invariant polynomial with integral coefficients in the curvature tensor. We prove an intrinsic Chern-Gauss-Bonnet formula f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::696dc66b859415ccf901fac9312409b3
We prove that a compact lcK manifold with holomorphic Lee vector field is Vaisman provided that either the Lee field has constant norm or the metric is Gauduchon (i.e., the Lee field is divergence-free). We also give examples of compact lcK manifolds
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8cd07e3cd1f67bd5b9112003791ebdfd
http://arxiv.org/abs/1712.05821
http://arxiv.org/abs/1712.05821
Autor:
Zang, Yiming
Publikováno v:
Manuscripta Mathematica; Sep2023, Vol. 172 Issue 1/2, p531-565, 35p